Suppr超能文献

针对具有不规则轮廓和内部孔洞的微阵列斑点的无监督图像分割。

Unsupervised image segmentation for microarray spots with irregular contours and inner holes.

作者信息

Belean Bogdan, Borda Monica, Ackermann Jörg, Koch Ina, Balacescu Ovidiu

机构信息

CETATEA Research Centre, National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67 - 103 Donat, Cluj-Napoca, Romania.

Department of Communication, Technical University of Cluj-Napoca, Baritiu 26-28, Cluj-Napoca, Romania.

出版信息

BMC Bioinformatics. 2015 Dec 23;16:412. doi: 10.1186/s12859-015-0842-3.

Abstract

BACKGROUND

Microarray analysis represents a powerful way to test scientific hypotheses on the functionality of cells. The measurements consider the whole genome, and the large number of generated data requires sophisticated analysis. To date, no gold-standard for the analysis of microarray images has been established. Due to the lack of a standard approach there is a strong need to identify new processing algorithms.

METHODS

We propose a novel approach based on hyperbolic partial differential equations (PDEs) for unsupervised spot segmentation. Prior to segmentation, morphological operations were applied for the identification of co-localized groups of spots. A grid alignment was performed to determine the borderlines between rows and columns of spots. PDEs were applied to detect the inflection points within each column and row; vertical and horizontal luminance profiles were evolved respectively. The inflection points of the profiles determined borderlines that confined a spot within adapted rectangular areas. A subsequent k-means clustering determined the pixels of each individual spot and its local background.

RESULTS

We evaluated the approach for a data set of microarray images taken from the Stanford Microarray Database (SMD). The data set is based on two studies on global gene expression profiles of Arabidopsis Thaliana. We computed values for spot intensity, regression ratio, and coefficient of determination. For spots with irregular contours and inner holes, we found intensity values that were significantly different from those determined by the GenePix Pro microarray analysis software. We determined the set of differentially expressed genes from our intensities and identified more activated genes than were predicted by the GenePix software.

CONCLUSIONS

Our method represents a worthwhile alternative and complement to standard approaches used in industry and academy. We highlight the importance of our spot segmentation approach, which identified supplementary important genes, to better explains the molecular mechanisms that are activated in a defense responses to virus and pathogen infection.

摘要

背景

微阵列分析是检验关于细胞功能的科学假设的有力方法。这些测量考虑了整个基因组,并且大量生成的数据需要复杂的分析。迄今为止,尚未建立微阵列图像分析的金标准。由于缺乏标准方法,迫切需要识别新的处理算法。

方法

我们提出了一种基于双曲型偏微分方程(PDEs)的无监督斑点分割新方法。在分割之前,应用形态学操作来识别共定位的斑点组。进行网格对齐以确定斑点行与列之间的边界线。应用偏微分方程来检测每列和每行内的拐点;分别演化垂直和水平亮度轮廓。轮廓的拐点确定了将斑点限制在适配矩形区域内的边界线。随后的k均值聚类确定了每个单独斑点及其局部背景的像素。

结果

我们对从斯坦福微阵列数据库(SMD)获取的微阵列图像数据集评估了该方法。该数据集基于两项关于拟南芥全球基因表达谱的研究。我们计算了斑点强度、回归率和决定系数的值。对于具有不规则轮廓和内部孔洞的斑点,我们发现强度值与GenePix Pro微阵列分析软件确定的值有显著差异。我们从我们的强度中确定了差异表达基因集,并鉴定出比GenePix软件预测的更多的激活基因。

结论

我们的方法是工业界和学术界使用的标准方法的有价值的替代和补充。我们强调我们的斑点分割方法的重要性,该方法识别出了补充性的重要基因,以更好地解释在对病毒和病原体感染的防御反应中被激活的分子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验