Suppr超能文献

基于生长切割的cDNA微阵列图像自动分割

Grow-cut based automatic cDNA microarray image segmentation.

作者信息

Katsigiannis Stamos, Zacharia Eleni, Maroulis Dimitris

出版信息

IEEE Trans Nanobioscience. 2015 Jan;14(1):138-45. doi: 10.1109/TNB.2014.2369961. Epub 2014 Nov 25.

Abstract

Complementary DNA (cDNA) microarray is a well-established tool for simultaneously studying the expression level of thousands of genes. Segmentation of microarray images is one of the main stages in a microarray experiment. However, it remains an arduous and challenging task due to the poor quality of images. Images suffer from noise, artifacts, and uneven background, while spots depicted on images can be poorly contrasted and deformed. In this paper, an original approach for the segmentation of cDNA microarray images is proposed. First, a preprocessing stage is applied in order to reduce the noise levels of the microarray image. Then, the grow-cut algorithm is applied separately to each spot location, employing an automated seed selection procedure, in order to locate the pixels belonging to spots. Application on datasets containing synthetic and real microarray images shows that the proposed algorithm performs better than other previously proposed methods. Moreover, in order to exploit the independence of the segmentation task for each separate spot location, both a multithreaded CPU and a graphics processing unit (GPU) implementation were evaluated.

摘要

互补DNA(cDNA)微阵列是一种成熟的工具,可用于同时研究数千个基因的表达水平。微阵列图像分割是微阵列实验的主要阶段之一。然而,由于图像质量较差,它仍然是一项艰巨且具有挑战性的任务。图像存在噪声、伪影和背景不均匀的问题,而图像上描绘的斑点对比度可能很差且变形。本文提出了一种用于cDNA微阵列图像分割的原创方法。首先,应用预处理阶段以降低微阵列图像的噪声水平。然后,采用自动种子选择程序,将生长切割算法分别应用于每个斑点位置,以定位属于斑点的像素。在包含合成和真实微阵列图像的数据集上的应用表明,所提出的算法比其他先前提出的方法表现更好。此外,为了利用每个单独斑点位置的分割任务的独立性,对多线程CPU和图形处理单元(GPU)实现都进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验