Hosseinnia Amir H, Atabaki Amir H, Eftekhar Ali A, Adibi Ali
Opt Express. 2015 Nov 16;23(23):30297-307. doi: 10.1364/OE.23.030297.
Hybrid nanophotonic platforms based on three-dimensional integration of different photonic materials are emerging as promising ecosystems for the optoelectronic device fabrication. In order to benefit from key features of both silicon (Si) and silicon nitride (SiN) on a single chip, we have developed a wafer-scale hybrid photonic platform based on the integration of a thin crystalline Si layer on top of a thin SiN layer with an ultra-thin oxide buffer layer. A complete optical path in the hybrid platform is demonstrated by coupling light back and forth between nanophotonic devices in Si and SiN layers. Using an adiabatic tapered coupling method, a record-low interlayer coupling-loss of 0.02 dB is achieved at 1550 nm telecommunication wavelength window. We also demonstrate high-Q resonators on the hybrid material platform with intrinsic Q's as high as 3 × 10(6) for a 60 μm-radius microring resonator, which is (to the best of our knowledge) the highest Q observed for a micro-resonator on a hybrid Si/SiN platform.
基于不同光子材料三维集成的混合纳米光子平台正成为用于光电器件制造的有前景的生态系统。为了在单个芯片上利用硅(Si)和氮化硅(SiN)的关键特性,我们开发了一种基于在薄SiN层顶部集成薄晶体Si层和超薄氧化物缓冲层的晶圆级混合光子平台。通过在Si和SiN层中的纳米光子器件之间来回耦合光,展示了混合平台中的完整光路。使用绝热锥形耦合方法,在1550 nm电信波长窗口实现了创纪录的0.02 dB的层间耦合损耗。我们还在混合材料平台上展示了高Q谐振器,对于半径为60μm的微环谐振器,其固有Q高达3×10(6),据我们所知,这是在混合Si/SiN平台上观察到的微谐振器的最高Q值。