Brewer Bonita J, Payen Celia, Di Rienzi Sara C, Higgins Megan M, Ong Giang, Dunham Maitreya J, Raghuraman M K
Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America.
PLoS Genet. 2015 Dec 23;11(12):e1005699. doi: 10.1371/journal.pgen.1005699. eCollection 2015 Dec.
DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.
DNA复制错误是进化的主要驱动力——从单核苷酸多态性到大规模拷贝数变异(CNV)。在此,我们测试了一个基于复制的特定模型,以解释间质性反向三倍体的产生。虽然没有遗传信息丢失,但新的反向连接点和所含序列拷贝数的增加创造了产生适应性表型的可能性。该模型——起源依赖的反向重复扩增(ODIRA)——提出,基因组序列中预先存在的短的、间断的反向重复序列处的复制错误会产生一个染色体外的、反向二聚体的、自主复制的中间体;随后二聚体的基因组整合产生了这类CNV,而不会丢失远端染色体序列。我们结合体外和体内方法,测试了所提出的复制错误及其对酿酒酵母染色体结构的下游影响的可行性。我们表明,所提出的复制错误——前导链和滞后新生链的连接以形成“封闭”叉——可在体外短的、间断的反向重复序列处发生。去除具有两个封闭叉的分子会产生一个发夹封顶的线性双链体,我们证明其在体内复制以产生一个反向二聚体质粒,该质粒随后通过同源重组整合到基因组中,产生一个反向三倍体。虽然已经提出了其他模型来解释反向三倍体及其衍生物,但我们的模型也可以解释人类从头产生的反向扩增子的产生,这些扩增子具有来自单亲同源染色体的2:1序列混合物——这一特征很容易用一个质粒中间体来解释,该中间体源自一个同源染色体,并在减数分裂之前整合到另一个同源染色体中。我们对ODIRA关键特征的测试支持了这一机制,并提出了进一步的探究途径,以揭示在人类健康和进化中起关键作用的间质性反向CNV的起源。