Chuong Julie N, Nun Nadav Ben, Suresh Ina, Matthews Julia Cano, De Titir, Avecilla Grace, Abdul-Rahman Farah, Brandt Nathan, Ram Yoav, Gresham David
Department of Biology, Center for Genomics and Systems Biology, New York University.
School of Zoology, Faculty of Life Sciences, Tel Aviv University.
bioRxiv. 2024 Oct 15:2024.05.03.589936. doi: 10.1101/2024.05.03.589936.
Copy number variants (CNVs)-gains and losses of genomic sequences-are an important source of genetic variation underlying rapid adaptation and genome evolution. However, despite their central role in evolution little is known about the factors that contribute to the structure, size, formation rate, and fitness effects of adaptive CNVs. Local genomic sequences are likely to be an important determinant of these properties. Whereas it is known that point mutation rates vary with genomic location and local DNA sequence features, the role of genome architecture in the formation, selection, and the resulting evolutionary dynamics of CNVs is poorly understood. Previously, we have found that the gene in undergoes frequent and repeated amplification and selection under long-term experimental evolution in glutamine-limiting conditions. The gene has a unique genomic architecture consisting of two flanking long terminal repeats (LTRs) and a proximate origin of DNA replication (autonomously replicating sequence, ARS), which are likely to promote rapid CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we performed experimental evolution in glutamine-limited chemostats using engineered strains lacking either the adjacent LTRs, ARS, or all elements. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. We find that although CNVs repeatedly form and sweep to high frequency in strains with modified genome architecture, removal of local DNA elements significantly impacts the rate and fitness effect of CNVs and the rate of adaptation. We performed genome sequence analysis to define the molecular mechanisms of CNV formation for 177 CNV lineages. We find that across all four strain backgrounds, between 26% and 80% of all CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, a distal ARS can mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination mechanisms still mediate gene amplification following insertion of retrotransposon elements at the locus. Our study demonstrates the remarkable plasticity of the genome and reveals that template switching during DNA replication is a frequent source of adaptive CNVs.
拷贝数变异(CNV)——基因组序列的增加和缺失——是快速适应和基因组进化背后遗传变异的重要来源。然而,尽管它们在进化中起着核心作用,但对于影响适应性CNV的结构、大小、形成速率和适应性效应的因素却知之甚少。局部基因组序列可能是这些特性的重要决定因素。虽然已知点突变率会随基因组位置和局部DNA序列特征而变化,但基因组结构在CNV的形成、选择以及由此产生的进化动态中的作用却了解甚少。此前,我们发现在谷氨酰胺限制条件下的长期实验进化过程中, 基因在 中频繁且重复地扩增和被选择。 基因具有独特的基因组结构,由两个侧翼长末端重复序列(LTR)和一个紧邻的DNA复制起点(自主复制序列,ARS)组成,这些可能会促进快速的CNV形成。为了测试这些基因组元件在CNV介导的适应性进化中的作用,我们使用缺乏相邻LTR、ARS或所有元件的工程菌株在谷氨酰胺限制的恒化器中进行了实验进化。使用CNV报告系统和基于神经网络模拟的推断(nnSBI),我们对每个菌株的CNV形成速率和适应性效应进行了量化。我们发现,尽管在基因组结构改变的菌株中CNV会反复形成并席卷至高频,但去除局部DNA元件会显著影响CNV的速率和适应性效应以及适应速率。我们进行了基因组序列分析,以确定177个CNV谱系的CNV形成分子机制。我们发现,在所有四种菌株背景中,所有CNV中有26%至80%是由依赖起源的反向重复扩增(ODIRA)介导的,这是DNA合成过程中前导链和滞后链之间模板切换的结果。在没有局部ARS的情况下,一个远端ARS可以通过ODIRA介导CNV形成。在没有局部LTR的情况下,同源重组机制在逆转座子元件插入该位点后仍会介导基因扩增。我们的研究证明了基因组具有显著的可塑性,并揭示了DNA复制过程中的模板切换是适应性CNV的常见来源。