Richdale Kathryn, Bullimore Mark A, Sinnott Loraine T, Zadnik Karla
*OD, PhD, FAAO †MCOptom, PhD, FAAO ‡PhD SUNY College of Optometry, New York, New York (KR); University of Houston College of Optometry, Houston, Texas (MAB); and The Ohio State University College of Optometry, Columbus, Ohio (LTS, KZ).
Optom Vis Sci. 2016 Jan;93(1):3-11. doi: 10.1097/OPX.0000000000000757.
To quantify changes in ocular dimensions associated with age, refractive error, and accommodative response, in vivo, in 30- to 50-year-old human subjects.
The right eyes of 91 adults were examined using ultrasonography, phakometry, keratometry, pachymetry, interferometry, anterior segment optical coherence tomography, and high-resolution magnetic resonance imaging. Accommodation was measured subjectively with a push-up test and objectively using open-field autorefraction. Regression analyses were used to assess differences in ocular parameters with age, refractive error, and accommodation.
With age, crystalline lens thickness increased (0.03 mm/yr), anterior lens curvature steepened (0.11 mm/yr), anterior chamber depth decreased (0.02 mm/yr), and lens equivalent refractive index decreased (0.001/yr) (all p < 0.01). With increasing myopia, there were significant increases in axial length (0.37 mm/D), vitreous chamber depth (0.34 mm/D), vitreous chamber height (0.09 mm/D), and ciliary muscle ring diameter (0.10 mm/D) (all p < 0.05). Increasing myopia was also associated with steepening of both the cornea (0.16 mm/D) and anterior lens surface (0.011 mm/D) (both p < 0.04). With accommodation, the ciliary muscle ring diameter decreased (0.08 mm/D) and the muscle thinned posteriorly (0.008 mm/D), allowing the lens to shorten equatorially (0.07 mm/D) and thicken axially (0.06 mm/D) (all p < 0.03).
Refractive error is significantly correlated with not only the axial dimensions but also the anterior equatorial dimension of the adult eye. Further testing and development of accommodating intraocular lenses should account for differences in patients' preoperative refractive error.
在30至50岁的人类受试者体内,量化与年龄、屈光不正和调节反应相关的眼部尺寸变化。
使用超声检查、晶状体测量法、角膜曲率测量法、角膜厚度测量法、干涉测量法、眼前节光学相干断层扫描和高分辨率磁共振成像对91名成年人的右眼进行检查。通过上推试验主观测量调节,并使用开放式自动验光客观测量调节。回归分析用于评估眼部参数随年龄、屈光不正和调节的差异。
随着年龄增长,晶状体厚度增加(0.03毫米/年),晶状体前曲率变陡(0.11毫米/年),前房深度减小(0.02毫米/年),晶状体等效折射率降低(0.001/年)(所有p<0.01)。随着近视程度增加,眼轴长度(0.37毫米/屈光度)、玻璃体腔深度(0.34毫米/屈光度)、玻璃体腔高度(0.09毫米/屈光度)和睫状肌环直径(0.10毫米/屈光度)均显著增加(所有p<0.05)。近视程度增加还与角膜(0.16毫米/屈光度)和晶状体前表面(0.011毫米/屈光度)变陡有关(两者p<0.04)。在调节过程中,睫状肌环直径减小(0.08毫米/屈光度),肌肉后部变薄(0.008毫米/屈光度),使晶状体赤道部缩短(0.07毫米/屈光度)并轴向增厚(0.06毫米/屈光度)(所有p<0.03)。
屈光不正不仅与成年眼的轴向尺寸显著相关,还与赤道前部尺寸显著相关。可调节人工晶状体的进一步测试和开发应考虑患者术前屈光不正的差异。