Dawson Deborah V, Pihlstrom Bruce L, Blanchette Derek R
J Am Dent Assoc. 2016 Apr;147(4):264-70. doi: 10.1016/j.adaj.2015.10.023. Epub 2015 Dec 17.
Meta-analysis refers to statistical methodology used to combine data from many studies to obtain an overall assessment of disease risk or treatment outcomes. In this article, the authors review basic methods, interpretation, and limitations of meta-analysis.
Investigators use meta-analysis approaches to combine data from available studies to obtain an answer to a specific question. An investigator uses a fixed model if there is homogeneity among the combined studies and a random-effects model if there is heterogeneity. The random-effects model results in wider confidence limits and more conservative estimates of overall results. A meta-analysis can be biased because studies with negative results (no differences in treatment outcomes) are less likely to be published (publication bias).
A meta-analysis should include a well-specified and reproducible set of procedures, including description of data abstraction procedures, attempts to include unpublished studies, and appropriate statistical analysis that includes thorough consideration of heterogeneity and potential bias.
Meta-analysis cannot correct shortcomings of existing studies or data. However, if potential pitfalls are recognized, meta-analysis can be a useful tool for summarizing existing studies, providing a means to address conflicting reports. Meta-analysis can lead to increased precision, providing greater power to detect existing relationships or treatment effects. Furthermore, meta-analysis may make it possible to address questions that cannot be answered by means of individual studies.
Meta-analysis provides an objective, quantitative synthesis of available studies but needs to be understood and assessed critically by those who use it to assess risk or make treatment decisions.
荟萃分析是指用于整合多项研究数据以全面评估疾病风险或治疗结果的统计方法。在本文中,作者回顾了荟萃分析的基本方法、解读及局限性。
研究人员采用荟萃分析方法整合现有研究的数据,以回答特定问题。若合并研究之间具有同质性,则采用固定模型;若存在异质性,则采用随机效应模型。随机效应模型会导致更宽的置信区间以及对总体结果更为保守的估计。荟萃分析可能存在偏倚,因为结果为阴性(治疗结果无差异)的研究发表的可能性较小(发表偏倚)。
荟萃分析应包括一套明确且可重复的程序,包括数据提取程序的描述、纳入未发表研究的尝试,以及适当的统计分析,其中包括对异质性和潜在偏倚的全面考量。
荟萃分析无法纠正现有研究或数据的缺陷。然而,如果认识到潜在的陷阱,荟萃分析可以成为总结现有研究的有用工具,提供一种解决相互矛盾报告的方法。荟萃分析可以提高精度,增强检测现有关系或治疗效果的能力。此外,荟萃分析可能使解决个别研究无法回答的问题成为可能。
荟萃分析提供了对现有研究的客观、定量综合,但使用它来评估风险或做出治疗决策的人需要对其进行批判性的理解和评估。