Suppr超能文献

二氧化碳富集通过调节碳氮代谢以适应气孔导度来调控番茄的铵营养。

CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

作者信息

Vega-Mas Izargi, Marino Daniel, Sánchez-Zabala Joseba, González-Murua Carmen, Estavillo Jose María, González-Moro María Begoña

机构信息

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain; Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.

出版信息

Plant Sci. 2015 Dec;241:32-44. doi: 10.1016/j.plantsci.2015.09.021. Epub 2015 Sep 28.

Abstract

Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.

摘要

铵(NH4(+))毒性通常发生在暴露于高环境铵浓度的植物中。铵同化能力可能作为一种生化机制来避免其毒性积累,但需要氮同化酶和碳回补途径之间的精细调节。在这项研究中,我们假设额外的碳供应,即将番茄品种Agora Hybrid F1暴露于升高的大气二氧化碳浓度下,可以改善光合作用过程,从而改善铵同化和耐受性。植物在以硝酸盐(NO3(-))或铵(NH4(+))作为氮源(5-15mM)的条件下生长,处于两种大气二氧化碳水平,即400和800ppm。测定了生长和气体交换参数、(15)N同位素特征、碳和氮代谢物以及酶活性。在7.5mM氮水平下,植物的生长与氮源无关,而较高的铵供应对生长有毒性。然而,在升高的二氧化碳浓度下,以7.5mM铵喂养的植物出现了特定的气孔关闭,提高了水分利用效率(WUE),但损害了植物的氮素状况。升高的二氧化碳消除了在环境二氧化碳浓度下无毒铵营养条件下观察到的三羧酸循环(TCA)回补酶的诱导。最后,二氧化碳富集在两种营养条件下都有利于番茄生长,虽然它没有减轻番茄对铵的耐受性,但它以氮源和剂量依赖的方式对植物代谢进行了差异调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验