Nakamura Tomohiro, Lipton Stuart A
Scintillon Institute, San Diego, CA 92121, USA.
Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92039, USA.
Trends Pharmacol Sci. 2016 Jan;37(1):73-84. doi: 10.1016/j.tips.2015.10.002. Epub 2015 Dec 17.
At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. By contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. We highlight here protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent post-translational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics.
在生理水平上,一氧化氮(NO)有助于维持正常的神经元活动和存活,因此是中枢神经系统中的一种重要调节机制。相比之下,越来越多的证据表明,接触环境毒素或正常的衰老过程会触发活性氧/氮物种(如NO)的过量产生,这与几种神经退行性疾病的病因有关。我们在此强调蛋白质S-亚硝基化,它是由NO基团共价连接到靶蛋白的半胱氨酸硫醇上产生的,是健康和疾病中NO信号传导的一种普遍效应器。我们回顾了目前对神经退行性疾病条件下这种氧化还原依赖性翻译后修饰的理解,并评估了针对失调的蛋白质S-亚硝基化如何能够带来新的治疗方法。