Suppr超能文献

具有凹形孔隙率的聚二甲基硅氧烷(PDMS)微珠的制备

Microbubble Fabrication of Concave-porosity PDMS Beads.

作者信息

Bertram John R, Nee Matthew J

机构信息

Department of Chemistry, Western Kentucky University.

Department of Chemistry, Western Kentucky University;

出版信息

J Vis Exp. 2015 Dec 15(106):e53440. doi: 10.3791/53440.

Abstract

Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer-Emmett-Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly.

摘要

微泡制备(通过使用精细乳液)提供了一种提高聚合物材料表面积与体积(SAV)比的方法,这对于分离应用特别有用。多孔聚二甲基硅氧烷(PDMS)珠粒可通过热固化这种乳液来制备,使水相和脂肪族相之间的界面塑造聚合物的形态。在此处所述的过程中,聚合物和交联剂(三乙氧基硅烷)在冷浴超声处理器中一起超声处理。经过一段时间的交联后,将乳液逐滴加入热的表面活性剂溶液中,使乳液的水相分离,并形成多孔聚合物珠粒。我们证明,通过调节乳液中水相的电解质含量,可以调整该方法并优化SAV比。以这种方式制备的珠粒用扫描电子显微镜成像,并使用布鲁诺尔-埃米特-泰勒(BET)分析确定代表性的SAV比。观察到电解质种类存在相当大的变异性,但总体趋势是一致的:在特定浓度下获得的SAV存在最大值,在此之后孔隙率显著降低。

相似文献

1
Microbubble Fabrication of Concave-porosity PDMS Beads.
J Vis Exp. 2015 Dec 15(106):e53440. doi: 10.3791/53440.
2
Low-density PDMS foams by controlled destabilization of thixotropic emulsions.
J Colloid Interface Sci. 2022 Nov 15;626:265-275. doi: 10.1016/j.jcis.2022.06.150. Epub 2022 Jun 28.
5
Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
Lab Chip. 2009 Jul 7;9(13):1957-61. doi: 10.1039/b816756g. Epub 2009 Apr 6.
6
Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
Macromol Rapid Commun. 2013 Nov;34(21):1728-33. doi: 10.1002/marc.201300669. Epub 2013 Oct 9.
7
Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion.
J Phys Chem B. 2006 Jul 20;110(28):13959-64. doi: 10.1021/jp0616361.
10
Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications.
Colloids Surf B Biointerfaces. 2014 Sep 1;121:395-9. doi: 10.1016/j.colsurfb.2014.06.027. Epub 2014 Jun 17.

引用本文的文献

1

本文引用的文献

1
Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications.
J Biomater Sci Polym Ed. 2013;24(9):1041-56. doi: 10.1080/09205063.2012.735097. Epub 2012 Oct 31.
2
Surface modification for PDMS-based microfluidic devices.
Electrophoresis. 2012 Jan;33(1):89-104. doi: 10.1002/elps.201100482. Epub 2011 Nov 30.
3
Polyethylene glycol-coated solid-phase microextraction fibres for the extraction of polar analytes--a review.
Talanta. 2011 Dec 15;87:1-7. doi: 10.1016/j.talanta.2011.09.061. Epub 2011 Oct 1.
4
Microfluidic diagnostic technologies for global public health.
Nature. 2006 Jul 27;442(7101):412-8. doi: 10.1038/nature05064.
5
Biomaterials: where we have been and where we are going.
Annu Rev Biomed Eng. 2004;6:41-75. doi: 10.1146/annurev.bioeng.6.040803.140027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验