Suppr超能文献

基于协同表示和核熵成分分析的睡眠阶段脑电图研究

[Research of Electroencephalogram for Sleep Stage Based on Collaborative Representation and Kernel Entropy Component Analysis].

作者信息

Zhao Panbo, Shi Jun, Liu Xiao, Jiang Qikun, Gu Yu

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Aug;32(4):730-4.

Abstract

Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram sig- nal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74 +/- 0.46%, sensitivity of 68.76 +/- 0.43% and specificity of 92.19 +/- 0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.

摘要

睡眠质量与人类健康密切相关。正确区分睡眠阶段对于评估睡眠质量、诊断和分析与睡眠相关的障碍非常重要。多导睡眠图(PSG)信号通常用于记录和分析睡眠阶段。有效的特征提取和表示是提高睡眠阶段分类性能的最重要步骤之一。在这项工作中,采用协作表示(CR)算法对从脑电图信号中提取的原始特征进行重新表示,然后进一步使用核熵成分分析(KECA)算法来降低CR特征的特征维度。为了评估CR-KECA的性能,我们比较了原始特征、CR特征以及经过主成分分析(PCA)后的准备好的CR特征(CR-PCA)。睡眠阶段分类的实验结果表明,与原始特征、CR特征和CR-PCA特征相比,CR-KECA方法取得了最佳性能,分类准确率为68.74±0.46%,灵敏度为68.76±0.43%,特异性为92.19±0.11%。此外,CR算法具有较低的计算复杂度,并且经过KECA后的特征维度要小得多,这使得CR-KECA算法适用于大规模睡眠数据的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验