Suppr超能文献

基于联合协作表征的多通道脑电信号睡眠阶段分类

Joint collaborative representation based sleep stage classification with multi-channel EEG signals.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:590-3. doi: 10.1109/EMBC.2015.7318431.

Abstract

Multi-channel electroencephalography (EEG) signals have been effectively used for sleet staging. However, it is still a challenge to effectively fuse and represent multi-channel EEG features. The coding based feature representation methods, such as sparse representation (SR), have achieved great success in computer vision and pattern recognition. Collaborative representation (CR) is a new coding method, which effectively works as a classifier. In this work, we first employ CR as a feature representation method. Moreover, a new joint CR (JCR) model is proposed for fusing multi-view data, which can represent not only the individual view information, but also the inner-correlative information between multi-views. JCR method is then applied to fuse and represent the features of multi-channel EEG signals for the classification of sleep stages. The experimental results indicate that CR feature outperforms SR feature, and JCR achieves best performance for sleep stage classification by effectively fusing multi-channel EEG signals.

摘要

多通道脑电图(EEG)信号已被有效地用于睡眠分期。然而,有效融合和表示多通道EEG特征仍然是一个挑战。基于编码的特征表示方法,如稀疏表示(SR),在计算机视觉和模式识别中取得了巨大成功。协同表示(CR)是一种新的编码方法,它有效地用作分类器。在这项工作中,我们首先将CR用作特征表示方法。此外,还提出了一种新的联合CR(JCR)模型用于融合多视图数据,该模型不仅可以表示各个视图信息,还可以表示多视图之间的内在相关信息。然后将JCR方法应用于融合和表示多通道EEG信号的特征,以进行睡眠阶段分类。实验结果表明,CR特征优于SR特征,并且JCR通过有效融合多通道EEG信号在睡眠阶段分类中取得了最佳性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验