Gibson Marcus I, Chen Percival Yang-Ting, Johnson Aileen C, Pierce Elizabeth, Can Mehmet, Ragsdale Stephen W, Drennan Catherine L
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109;
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):320-5. doi: 10.1073/pnas.1518537113. Epub 2015 Dec 28.
Thiamine pyrophosphate (TPP)-dependent oxalate oxidoreductase (OOR) metabolizes oxalate, generating two molecules of CO2 and two low-potential electrons, thus providing both the carbon and reducing equivalents for operation of the Wood-Ljungdahl pathway of acetogenesis. Here we present structures of OOR in which two different reaction intermediate bound states have been trapped: the covalent adducts between TPP and oxalate and between TPP and CO2. These structures, along with the previously determined structure of substrate-free OOR, allow us to visualize how active site rearrangements can drive catalysis. Our results suggest that OOR operates via a bait-and-switch mechanism, attracting substrate into the active site through the presence of positively charged and polar residues, and then altering the electrostatic environment through loop and side chain movements to drive catalysis. This simple but elegant mechanism explains how oxalate, a molecule that humans and most animals cannot break down, can be used for growth by acetogenic bacteria.
硫胺素焦磷酸(TPP)依赖性草酸氧化还原酶(OOR)代谢草酸,生成两分子二氧化碳和两个低电位电子,从而为产乙酸的伍德-Ljungdahl途径的运行提供碳源和还原当量。在此,我们展示了OOR的结构,其中捕获了两种不同的反应中间体结合状态:TPP与草酸之间以及TPP与二氧化碳之间的共价加合物。这些结构,连同先前确定的无底物OOR的结构,使我们能够可视化活性位点重排如何驱动催化作用。我们的结果表明,OOR通过一种诱饵切换机制起作用,通过带正电荷和极性残基的存在将底物吸引到活性位点,然后通过环和侧链运动改变静电环境以驱动催化作用。这种简单而优雅的机制解释了草酸这种人类和大多数动物无法分解的分子如何被产乙酸细菌用于生长。