Reed George H, Ragsdale Stephen W, Mansoorabadi Steven O
Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726, USA.
Biochim Biophys Acta. 2012 Nov;1824(11):1291-8. doi: 10.1016/j.bbapap.2011.11.010. Epub 2011 Dec 8.
Thiamin pyrophosphate (TPP) is essential in carbohydrate metabolism in all forms of life. TPP-dependent decarboxylation reactions of 2-oxo-acid substrates result in enamine adducts between the thiazolium moiety of the coenzyme and decarboxylated substrate. These central enamine intermediates experience different fates from protonation in pyruvate decarboxylase to oxidation by the 2-oxoacid dehydrogenase complexes, the pyruvate oxidases, and 2-oxoacid oxidoreductases. Virtually all of the TPP-dependent enzymes, including pyruvate decarboxylase, can be assayed by 1-electron redox reactions linked to ferricyanide. Oxidation of the enamines is thought to occur via a 2-electron process in the 2-oxoacid dehydrogenase complexes, wherein acyl group transfer is associated with reduction of the disulfide of the lipoamide moiety. However, discrete 1-electron steps occur in the oxidoreductases, where one or more [4Fe-4S] clusters mediate the electron transfer reactions to external electron acceptors. These radical intermediates can be detected in the absence of the acyl-group acceptor, coenzyme A (CoASH). The π-electron system of the thiazolium ring stabilizes the radical. The extensively delocalized character of the radical is evidenced by quantitative analysis of nuclear hyperfine splitting tensors as detected by electron paramagnetic resonance (EPR) spectroscopy and by electronic structure calculations. The second electron transfer step is markedly accelerated by the presence of CoASH. While details of the second electron transfer step and its facilitation by CoASH remain elusive, expected redox properties of potential intermediates limit possible scenarios. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
硫胺素焦磷酸(TPP)在所有生命形式的碳水化合物代谢中都至关重要。2-氧代酸底物的TPP依赖性脱羧反应会在辅酶的噻唑鎓部分与脱羧底物之间形成烯胺加合物。这些核心烯胺中间体经历不同的命运,从丙酮酸脱羧酶中的质子化到2-氧代酸脱氢酶复合物、丙酮酸氧化酶和2-氧代酸氧化还原酶的氧化。几乎所有依赖TPP的酶,包括丙酮酸脱羧酶,都可以通过与铁氰化物相关的单电子氧化还原反应进行测定。烯胺的氧化被认为在2-氧代酸脱氢酶复合物中通过双电子过程发生,其中酰基转移与硫辛酰胺部分的二硫键还原相关。然而,在氧化还原酶中会发生离散的单电子步骤,其中一个或多个[4Fe-4S]簇介导电子转移反应至外部电子受体。这些自由基中间体可以在没有酰基受体辅酶A(CoASH)的情况下被检测到。噻唑鎓环的π电子系统使自由基稳定。通过电子顺磁共振(EPR)光谱检测的核超精细分裂张量的定量分析以及电子结构计算证明了自由基的广泛离域特性。CoASH的存在显著加速了第二个电子转移步骤。虽然第二个电子转移步骤及其由CoASH促进的细节仍然难以捉摸,但潜在中间体的预期氧化还原性质限制了可能的情况。本文是名为:自由基SAM酶和自由基酶学的特刊的一部分。