Nathani Neelam M, Patel Amrutlal K, Mootapally Chandra Shekar, Reddy Bhaskar, Shah Shailesh V, Lunagaria Pravin M, Kothari Ramesh K, Joshi Chaitanya G
Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
BMC Genomics. 2015 Dec 29;16:1116. doi: 10.1186/s12864-015-2340-4.
The rumen microbiota functions as an effective system for conversion of dietary feed to microbial proteins and volatile fatty acids. In the present study, metagenomic approach was applied to elucidate the buffalo rumen microbiome of Jaffrabadi buffalo adapted to varied dietary treatments with the hypothesis that the microbial diversity and subsequent in the functional capacity will alter with diet change and enhance our knowledge of effect of microbe on host physiology. Eight adult animals were gradually adapted to an increasing roughage diet (4 animals each with green and dry roughage) containing 50:50 (J1), 75:25 (J2) and 100:0 (J3) roughage to concentrate proportion for 6 weeks. Metagenomic sequences of solid (fiber adherent microbiota) and liquid (fiber free microbiota) fractions obtained using Ion Torrent PGM platform were analyzed using MG-RAST server and CAZymes approach.
Taxonomic analysis revealed that Bacteroidetes was the most abundant phylum followed by Firmicutes, Fibrobacter and Proteobacteria. Functional analysis revealed protein (25-30 %) and carbohydrate (15-20 %) metabolism as the dominant categories. Principal component analysis demonstrated that roughage proportion, fraction of rumen and type of forage affected rumen microbiome at taxonomic as well as functional level. Rumen metabolite study revealed that rumen fluid nitrogen content reduced in high roughage diet fed animals and pathway analysis showed reduction in the genes coding enzymes involved in methanogenesis pathway. CAZyme annotation revealed the abundance of genes encoding glycoside hydrolases (GH), with the GH3 family most abundant followed by GH2 and GH13 in all samples.
Results reveals that high roughage diet feed improved microbial protein synthesis and reduces methane emission. CAZyme analysis indicated the importance of microbiome in feed component digestion for fulfilling energy requirements of the host. The findings help determine the role of rumen microbes in plant polysaccharide breakdown and in developing strategies to maximize productivity in ruminants.
瘤胃微生物群作为一个有效的系统,可将日粮饲料转化为微生物蛋白和挥发性脂肪酸。在本研究中,采用宏基因组学方法来阐明适应不同日粮处理的贾夫拉巴迪水牛的瘤胃微生物组,其假设是微生物多样性及其随后的功能能力会随着日粮变化而改变,并增进我们对微生物对宿主生理学影响的认识。八只成年动物逐渐适应了粗饲料比例不断增加的日粮(每组4只,分别饲喂青绿粗饲料和干粗饲料),粗饲料与精饲料的比例分别为50:50(J1)、75:25(J2)和100:0(J3),持续6周。使用Ion Torrent PGM平台获得的固体(纤维附着微生物群)和液体(无纤维微生物群)部分的宏基因组序列,通过MG-RAST服务器和碳水化合物活性酶(CAZyme)方法进行分析。
分类学分析表明,拟杆菌门是最丰富的门类,其次是厚壁菌门、纤维杆菌门和变形菌门。功能分析表明,蛋白质(25%-30%)和碳水化合物(15%-20%)代谢是主要类别。主成分分析表明,粗饲料比例、瘤胃部分和饲料类型在分类学以及功能水平上影响瘤胃微生物组。瘤胃代谢物研究表明,饲喂高粗饲料日粮的动物瘤胃液氮含量降低,通路分析显示参与甲烷生成途径的编码酶的基因减少。CAZyme注释显示,编码糖苷水解酶(GH)的基因丰富,在所有样本中,GH3家族最丰富,其次是GH2和GH13。
结果表明,高粗饲料日粮可改善微生物蛋白合成并减少甲烷排放。CAZyme分析表明微生物组在饲料成分消化以满足宿主能量需求方面的重要性。这些发现有助于确定瘤胃微生物在植物多糖分解中的作用,并有助于制定提高反刍动物生产力的策略。