Kundu Tanushree, Dutta Priyanka, Nagar Dhriti, Maiti Sankar, Ghose Aurnab
Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
J Cell Sci. 2021 Jul 1;134(13). doi: 10.1242/jcs.252916. Epub 2021 Jul 8.
Dynamic co-regulation of the actin and microtubule subsystems enables the highly precise and adaptive remodelling of the cytoskeleton necessary for critical cellular processes, such as axonal pathfinding. The modes and mediators of this interpolymer crosstalk, however, are inadequately understood. We identify Fmn2, a non-diaphanous-related formin associated with cognitive disabilities, as a novel regulator of cooperative actin-microtubule remodelling in growth cones of both chick and zebrafish neurons. We show that Fmn2 stabilizes microtubules in the growth cones of cultured spinal neurons and in vivo. Super-resolution imaging revealed that Fmn2 facilitates guidance of exploratory microtubules along actin bundles into the chemosensory filopodia. Using live imaging, biochemistry and single-molecule assays, we show that a C-terminal domain in Fmn2 is necessary for the dynamic association between microtubules and actin filaments. In the absence of the cross-bridging function of Fmn2, filopodial capture of microtubules is compromised, resulting in destabilized filopodial protrusions and deficits in growth cone chemotaxis. Our results uncover a critical function for Fmn2 in actin-microtubule crosstalk in neurons and demonstrate that the modulation of microtubule dynamics via associations with F-actin is central to directional motility.
肌动蛋白和微管亚系统的动态协同调节能够实现细胞骨架的高度精确和适应性重塑,这对于轴突导向等关键细胞过程至关重要。然而,这种聚合物间串扰的模式和介导因子尚未得到充分了解。我们发现Fmn2,一种与认知障碍相关的非透明相关formin,是鸡和斑马鱼神经元生长锥中肌动蛋白 - 微管协同重塑的新型调节因子。我们表明,Fmn2在培养的脊髓神经元生长锥和体内稳定微管。超分辨率成像显示,Fmn2促进探索性微管沿着肌动蛋白束进入化学感受丝状伪足的导向。使用实时成像、生物化学和单分子检测,我们表明Fmn2中的C末端结构域对于微管和肌动蛋白丝之间的动态关联是必需的。在缺乏Fmn2的交联功能时,微管的丝状伪足捕获受到损害,导致丝状伪足突起不稳定和生长锥趋化性缺陷。我们的结果揭示了Fmn2在神经元肌动蛋白 - 微管串扰中的关键功能,并证明通过与F - 肌动蛋白的关联来调节微管动力学是定向运动的核心。