Suppr超能文献

NASICON 结构的 NaTi2(PO4)3@C 纳米复合材料作为低工作电压的钠离子电池高性能负极材料。

NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries.

机构信息

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University , Changchun 130012, P. R. China.

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2238-46. doi: 10.1021/acsami.5b11003. Epub 2016 Jan 12.

Abstract

NASICON-type structured NaTi2(PO4)3 (NTP) has attracted wide attention as a promising anode material for sodium-ion batteries (SIBs), whereas it still suffer from poor rate capability and cycle stability due to the low electronic conductivity. Herein, the architecture, NTP nanoparticles embedded in the mesoporous carbon matrix, is designed and realized by a facile sol-gel method. Different than the commonly employed potentials of 1.5-3.0 V, the Na(+) storage performance is examined at low operation voltages between 0.01 and 3.0 V. The electrode demonstrates an improved capacity of 208 mAh g(-1), one of the highest capacities in the state-of-the-art titanium-based anode materials. Besides the high working plateau at 2.1 V, another one is observed at approximately 0.4 V for the first time due to further reduction of Ti(3+) to Ti(2+). Remarkably, the anode exhibits superior rate capability, whose capacity and corresponding capacity retention reach 56 mAh g(-1) and 68%, respectively, over 10000 cycles under the high current density of 20 C rate (4 A g(-1)). Worthy of note is that the electrode shows negligible capacity loss as the current densities increase from 50 to 100 C, which enables NTP@C nanocomposite as the prospective anode of SIBs with ultrahigh power density.

摘要

NASICON 型结构的 NaTi2(PO4)3(NTP)作为一种很有前途的钠离子电池(SIBs)的阳极材料引起了广泛关注,但由于电子电导率低,其倍率性能和循环稳定性仍较差。在此,通过一种简单的溶胶-凝胶法设计并实现了 NTP 纳米颗粒嵌入介孔碳基体的结构。与通常采用的 1.5-3.0 V 电位不同,在 0.01-3.0 V 的低工作电压下对钠离子存储性能进行了测试。该电极表现出了改进的 208 mAh g(-1)的容量,这是基于钛的阳极材料中最高容量之一。除了 2.1 V 的高工作平台外,由于 Ti(3+)进一步还原为 Ti(2+),首次观察到大约 0.4 V 的另一个平台。值得注意的是,该阳极表现出优异的倍率性能,在 20 C 率(4 A g(-1))下经过 10000 次循环后,其容量和相应的容量保持率分别达到 56 mAh g(-1)和 68%。值得注意的是,随着电流密度从 50 增加到 100 C,电极显示出可忽略的容量损失,这使得 NTP@C 纳米复合材料成为具有超高功率密度的 SIBs 的有前途的阳极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验