Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany.
Nat Commun. 2017 Jun 29;8:15888. doi: 10.1038/ncomms15888.
Sodium-ion batteries operating at ambient temperature hold great promise for use in grid energy storage owing to their significant cost advantages. However, challenges remain in the development of suitable electrode materials to enable long lifespan and high rate capability. Here we report a sodium super-ionic conductor structured electrode, sodium vanadium titanium phosphate, which delivers a high specific capacity of 147 mA h g at a rate of 0.1 C and excellent capacity retentions at high rates. A symmetric sodium-ion full cell demonstrates a superior rate capability with a specific capacity of about 49 mA h g at 20 C rate and ultralong lifetime over 10,000 cycles. Furthermore, in situ synchrotron diffraction and X-ray absorption spectroscopy measurement are carried out to unravel the underlying sodium storage mechanism and charge compensation behaviour. Our results suggest the potential application of symmetric batteries for electrochemical energy storage given the superior rate capability and long cycle life.
钠离子电池在环境温度下运行,由于其具有显著的成本优势,有望用于电网储能。然而,在开发合适的电极材料以实现长寿命和高倍率性能方面仍然存在挑战。在这里,我们报告了一种具有钠离子超离子导体结构的电极,钒钛磷酸钠,在 0.1 C 的倍率下可提供 147 mA h g 的高比容量,并在高倍率下具有出色的容量保持率。对称钠离子全电池在 20 C 的倍率下具有约 49 mA h g 的比容量和超过 10000 次循环的超长寿命,表现出优异的倍率性能。此外,还进行了同步辐射衍射和 X 射线吸收光谱测量,以揭示其内在的储钠机制和电荷补偿行为。鉴于其优异的倍率性能和长循环寿命,我们的结果表明对称电池在电化学储能方面具有应用潜力。