Suppr超能文献

氧化应激在两种高脂血症模型中导致葡萄糖代谢异常和胰岛素敏感性异常。

Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models.

作者信息

Bai Jiefei, Zheng Shuang, Jiang Dongdong, Han Tingting, Li Yangxue, Zhang Yao, Liu Wei, Cao Yunshan, Hu Yaomin

机构信息

Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University Shanghai 200127, People's Republic of China.

Department of Cardiology, Gansu Provincial Hospital Lanzhou 730000, Gansu, People's Republic of China.

出版信息

Int J Clin Exp Pathol. 2015 Oct 1;8(10):13193-200. eCollection 2015.

Abstract

OBJECTIVE

Lipid metabolism disturbance can result in insulin resistance and glucose intolerance; however, the features of glucose metabolism are still elusive in different dyslipidemia. Our study intended to explore the characteristics and molecular mechanisms of glucose metabolism abnormal in hypercholesterolemia and hypertriglyceridemia models.

METHODS

Two mouse models were used in this study, one was lipoprotein lipase gene-deleted (LPL(+/-)) mice, and the other was high fat dietary (HFD) mice. Levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterin (HDL-c) and low-density lipoprotein-cholesterin (LDL-c) in serum were measured by full-automatic biochemical analyzer. Intraperitoneal glucose tolerance test (IPGTT) was performed to evaluate insulin sensitivity and β-cell function. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) levels in serum were measured by colorimetric determination. mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (Gpx1), nuclear factor erythroid 2-related factor 2 (Nrf2a) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in liver, skeletal muscle, visceral fat and subcutaneous fat were measured by Real-Time PCR.

RESULTS

Compared with HFD mice, the levels of serum TG were significantly higher in LPL(+/-) mice, whereas the levels of TC, HDL-c, LDL-c were significantly lower. The plasma glucose levels were increased at each time point of intra-peritoneal glucose tolerance test (IPGTT) in both groups. Furthermore, the level of serum fasting insulin and homeostasis model assessment index-insulin resistance (HOMA-IR) increased with a decreased ISI in both groups. In addition, the plasma MDA of HFD group was higher than that of lipoprotein lipase-deficiency (LPL(+/-)) group, while the activity of T-SOD in HFD group was lower than that in LPL(+/-) group. Real-Time PCR revealed that the expressions of SOD1, CAT and Gpx1 in liver and subcutaneous fat were lower in HFD group than those in LPL(+/-) group, but higher in skeletal muscle and visceral fat.

CONCLUSIONS

There are different in glucose metabolism between high TG mice and high TC mice. Impaired insulin sensitivity is more serious in HFD mice than that in LPL(+/-) mice. Oxidative stress could contribute to insulin resistance in hyperlipidemia mice.

摘要

目的

脂质代谢紊乱可导致胰岛素抵抗和葡萄糖不耐受;然而,不同血脂异常情况下葡萄糖代谢的特征仍不明确。我们的研究旨在探讨高胆固醇血症和高甘油三酯血症模型中葡萄糖代谢异常的特征及分子机制。

方法

本研究使用了两种小鼠模型,一种是脂蛋白脂肪酶基因缺失(LPL(+/-))小鼠,另一种是高脂饮食(HFD)小鼠。采用全自动生化分析仪测定血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-c)和低密度脂蛋白胆固醇(LDL-c)水平。进行腹腔葡萄糖耐量试验(IPGTT)以评估胰岛素敏感性和β细胞功能。采用比色法测定血清丙二醛(MDA)和总超氧化物歧化酶(T-SOD)水平。通过实时定量PCR检测肝脏、骨骼肌、内脏脂肪和皮下脂肪中超氧化物歧化酶1(SOD1)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶1(Gpx1)、核因子红细胞2相关因子2(Nrf2a)和过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)的mRNA表达。

结果

与HFD小鼠相比,LPL(+/-)小鼠血清TG水平显著升高,而TC、HDL-c、LDL-c水平显著降低。两组腹腔葡萄糖耐量试验(IPGTT)各时间点的血糖水平均升高。此外,两组空腹胰岛素水平和稳态模型评估指数-胰岛素抵抗(HOMA-IR)均升高,胰岛素敏感指数(ISI)降低。另外,HFD组血浆MDA高于脂蛋白脂肪酶缺乏(LPL(+/-))组,而HFD组T-SOD活性低于LPL(+/-)组。实时定量PCR显示,HFD组肝脏和皮下脂肪中SOD1、CAT和Gpx1的表达低于LPL(+/-)组,但在骨骼肌和内脏脂肪中较高。

结论

高甘油三酯小鼠和高胆固醇小鼠的葡萄糖代谢存在差异。HFD小鼠的胰岛素敏感性受损比LPL(+/-)小鼠更严重。氧化应激可能导致高脂血症小鼠的胰岛素抵抗。

相似文献

2
Insulin resistance caused by lipotoxicity is related to oxidative stress and endoplasmic reticulum stress in LPL gene knockout heterozygous mice.
Atherosclerosis. 2015 Mar;239(1):276-82. doi: 10.1016/j.atherosclerosis.2015.01.020. Epub 2015 Jan 23.
3
Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.
J Complement Integr Med. 2016 Jun 1;13(2):137-43. doi: 10.1515/jcim-2015-0070.
10
Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects.
Mol Cell Endocrinol. 2013 Aug 25;376(1-2):70-80. doi: 10.1016/j.mce.2013.06.014. Epub 2013 Jun 18.

引用本文的文献

2
The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components.
Medicina (Kaunas). 2025 Mar 25;61(4):582. doi: 10.3390/medicina61040582.
4
The study on antioxidant activity of wendan decoction in treating hyperlipidemia: a pharmacokinetic-pharmacodynamic (PK-PD) model.
Front Pharmacol. 2024 Jan 23;15:1260603. doi: 10.3389/fphar.2024.1260603. eCollection 2024.
5
Jiangtang Sanhao formula ameliorates skeletal muscle insulin resistance regulating GLUT4 translocation in diabetic mice.
Front Pharmacol. 2022 Sep 8;13:950535. doi: 10.3389/fphar.2022.950535. eCollection 2022.
6
Lipid-lowering and antioxidative effects of L. root flavonoid extracts.
RSC Adv. 2019 Aug 27;9(46):26757-26767. doi: 10.1039/c9ra04481g. eCollection 2019 Aug 23.
9
Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes.
Front Physiol. 2020 Oct 29;11:567899. doi: 10.3389/fphys.2020.567899. eCollection 2020.
10
Phenothiazines Enhance the Hypothermic Preservation of Liver Grafts: A Pilot in Vitro Study.
Cell Transplant. 2019 Mar;28(3):318-327. doi: 10.1177/0963689718824559. Epub 2019 Jan 22.

本文引用的文献

1
Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline.
J Clin Endocrinol Metab. 2012 Sep;97(9):2969-89. doi: 10.1210/jc.2011-3213.
2
Mechanisms for insulin resistance: common threads and missing links.
Cell. 2012 Mar 2;148(5):852-71. doi: 10.1016/j.cell.2012.02.017.
3
Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance.
Obesity (Silver Spring). 2012 May;20(5):1115-7. doi: 10.1038/oby.2011.401. Epub 2012 Jan 19.
4
Hypertriglyceridemia secondary to obesity and diabetes.
Biochim Biophys Acta. 2012 May;1821(5):819-25. doi: 10.1016/j.bbalip.2011.10.003. Epub 2011 Oct 8.
5
Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity.
J Clin Endocrinol Metab. 2011 Nov;96(11):E1756-60. doi: 10.1210/jc.2011-0615. Epub 2011 Aug 24.
6
Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice.
J Lipid Res. 2011 Sep;52(9):1626-35. doi: 10.1194/jlr.M016246. Epub 2011 Jun 20.
7
Prevalence of diabetes among men and women in China.
N Engl J Med. 2010 Mar 25;362(12):1090-101. doi: 10.1056/NEJMoa0908292.
8
Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis.
Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E462-73. doi: 10.1152/ajpendo.90764.2008. Epub 2009 Jun 9.
9
Hypercholesterolaemia and its management.
BMJ. 2008 Aug 21;337:a993. doi: 10.1136/bmj.a993.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验