Suppr超能文献

过渡金属衬底上石墨烯的氧嵌入:一种边缘受限机制。

Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.

作者信息

Ma Liang, Zeng Xiao Cheng, Wang Jinlan

机构信息

Department of Physics, Southeast University , Nanjing 211189, China.

Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States.

出版信息

J Phys Chem Lett. 2015 Oct 15;6(20):4099-105. doi: 10.1021/acs.jpclett.5b01841. Epub 2015 Oct 1.

Abstract

Oxygen intercalation has been proven to be an efficient experimental approach to decouple chemical vapor deposition grown graphene from metal substrate with mild damage, thereby enabling graphene transfer. However, the mechanism of oxygen intercalation and associated rate-limiting step are still unclear on the molecular level. Here, by using density functional theory, we evaluate the thermodynamics stability of graphene edge on transition metal surface in the context of oxygen and explore various reaction pathways and energy barriers, from which we can identify the key steps as well as the roles of metal passivated graphene edges during the oxygen intercalation. Our calculations suggest that in well-controlled experimental conditions, oxygen atoms can be easily intercalated through either zigzag or armchair graphene edges on metal surface, whereas the unwanted graphene oxidation etching can be suppressed. Oxygen intercalation is, thus, an efficient and low-damage way to decouple graphene from a metal substrate while it allows reusing metal substrate for graphene growth.

摘要

氧插入已被证明是一种有效的实验方法,可在轻度损伤的情况下将化学气相沉积生长的石墨烯与金属衬底分离,从而实现石墨烯转移。然而,在分子水平上,氧插入的机制以及相关的限速步骤仍不清楚。在此,我们通过使用密度泛函理论,在氧的背景下评估了过渡金属表面上石墨烯边缘的热力学稳定性,并探索了各种反应路径和能垒,从中我们可以确定关键步骤以及金属钝化石墨烯边缘在氧插入过程中的作用。我们的计算表明,在良好控制的实验条件下,氧原子可以很容易地通过金属表面上的锯齿形或扶手椅形石墨烯边缘插入,而不需要的石墨烯氧化蚀刻可以得到抑制。因此,氧插入是一种有效且低损伤的方法,可将石墨烯与金属衬底分离,同时允许将金属衬底重新用于石墨烯生长。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验