Langeloth Michael, Sugii Taisuke, Böhm Michael C, Müller-Plathe Florian
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich Weiss Straße 4, D-64287 Darmstadt, Germany.
Center for Technology Innovation - Mechanical Engineering, Research & Development Group, Hitachi, Ltd., 832-2, Horiguchi, Hitachinaka, Ibaraki 312-0034, Japan.
J Chem Phys. 2015 Dec 28;143(24):243158. doi: 10.1063/1.4937627.
We investigate the volumetric glass transition temperature Tg in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that Tg increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition Tg in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that Tg is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.
我们通过分子动力学模拟研究了环氧热固性材料的体积玻璃化转变温度Tg。环氧热固性材料由树脂双酚A二缩水甘油醚和固化剂二亚乙基三胺组成。为了便于对更大长度尺度进行模拟,已使用迭代玻尔兹曼反演推导了一种基于结构的粗粒化(CG)力场。我们观察到,对于全原子(AA)模拟和CG模拟,Tg均随交联度的增加而明显升高。由于CG势的软性质,未固化混合物的CG模拟中的转变Tg远低于AA模拟中的转变Tg,但随着刚性交联的形成,其增加得更多。对与表面接触的CG混合物进行的额外模拟表明,存在一个厚度约为3 nm的界面区域,其中网络性质与本体有显著偏差。根据实验研究,我们观察到在该界面区域Tg降低,并随着与表面距离的增加逐渐升高至其本体值。本研究表明,玻璃化转变是一种局部现象,它取决于紧邻环境中的网络结构。