Giuntoli Andrea, Hansoge Nitin K, van Beek Anton, Meng Zhaoxu, Chen Wei, Keten Sinan
Dept. of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109.
Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3109.
NPJ Comput Mater. 2021;7. doi: 10.1038/s41524-021-00634-1. Epub 2021 Oct 14.
A persistent challenge in predictive molecular modeling of thermoset polymers is to capture the effects of chemical composition and degree of crosslinking (DC) on dynamical and mechanical properties with high computational efficiency. We established a new coarse-graining (CG) approach that combines the energy renormalization method with Gaussian process surrogate models of the molecular dynamics simulations. This allows a machine-learning informed functional calibration of DC-dependent CG force field parameters. Taking versatile epoxy resins consisting of Bisphenol A diglycidyl ether combined with curing agent of either 4,4-Diaminodicyclohexylmethane or polyoxypropylene diamines, we demonstrated excellent agreement between all-atom and CG predictions for density, Debye-Waller factor, Young's modulus and yield stress at any DC. We further introduce a surrogate model enabled simplification of the functional forms of 14 non-bonded calibration parameters by quantifying the uncertainty of a candidate set of high-dimensional/flexible calibration functions. The framework established provides an efficient methodology for chemistry-specific, large-scale investigations of the dynamics and mechanics of epoxy resins.
热固性聚合物预测分子建模中的一个长期挑战是,以高计算效率捕捉化学成分和交联度(DC)对动力学和力学性能的影响。我们建立了一种新的粗粒化(CG)方法,该方法将能量重整化方法与分子动力学模拟的高斯过程代理模型相结合。这使得能够基于机器学习对依赖于DC的CG力场参数进行功能校准。以由双酚A二缩水甘油醚与4,4-二氨基二环己基甲烷或聚氧化丙烯二胺固化剂组成的通用环氧树脂为例,我们证明了在任何DC下,全原子预测和CG预测在密度、德拜-瓦勒因子、杨氏模量和屈服应力方面都具有出色的一致性。我们进一步引入了一个代理模型,通过量化一组高维/灵活校准函数候选集的不确定性,简化了14个非键校准参数的函数形式。所建立的框架为环氧树脂动力学和力学的特定化学大规模研究提供了一种有效的方法。