Suppr超能文献

基于机器学习引导的能量重整化对环氧树脂进行系统粗粒化

Systematic Coarse-graining of Epoxy Resins with Machine Learning-Informed Energy Renormalization.

作者信息

Giuntoli Andrea, Hansoge Nitin K, van Beek Anton, Meng Zhaoxu, Chen Wei, Keten Sinan

机构信息

Dept. of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109.

Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3109.

出版信息

NPJ Comput Mater. 2021;7. doi: 10.1038/s41524-021-00634-1. Epub 2021 Oct 14.

Abstract

A persistent challenge in predictive molecular modeling of thermoset polymers is to capture the effects of chemical composition and degree of crosslinking (DC) on dynamical and mechanical properties with high computational efficiency. We established a new coarse-graining (CG) approach that combines the energy renormalization method with Gaussian process surrogate models of the molecular dynamics simulations. This allows a machine-learning informed functional calibration of DC-dependent CG force field parameters. Taking versatile epoxy resins consisting of Bisphenol A diglycidyl ether combined with curing agent of either 4,4-Diaminodicyclohexylmethane or polyoxypropylene diamines, we demonstrated excellent agreement between all-atom and CG predictions for density, Debye-Waller factor, Young's modulus and yield stress at any DC. We further introduce a surrogate model enabled simplification of the functional forms of 14 non-bonded calibration parameters by quantifying the uncertainty of a candidate set of high-dimensional/flexible calibration functions. The framework established provides an efficient methodology for chemistry-specific, large-scale investigations of the dynamics and mechanics of epoxy resins.

摘要

热固性聚合物预测分子建模中的一个长期挑战是,以高计算效率捕捉化学成分和交联度(DC)对动力学和力学性能的影响。我们建立了一种新的粗粒化(CG)方法,该方法将能量重整化方法与分子动力学模拟的高斯过程代理模型相结合。这使得能够基于机器学习对依赖于DC的CG力场参数进行功能校准。以由双酚A二缩水甘油醚与4,4-二氨基二环己基甲烷或聚氧化丙烯二胺固化剂组成的通用环氧树脂为例,我们证明了在任何DC下,全原子预测和CG预测在密度、德拜-瓦勒因子、杨氏模量和屈服应力方面都具有出色的一致性。我们进一步引入了一个代理模型,通过量化一组高维/灵活校准函数候选集的不确定性,简化了14个非键校准参数的函数形式。所建立的框架为环氧树脂动力学和力学的特定化学大规模研究提供了一种有效的方法。

相似文献

4
Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials.低分辨率粗粒度自由能势的分层机器学习
J Chem Theory Comput. 2023 Jul 25;19(14):4436-4450. doi: 10.1021/acs.jctc.3c00128. Epub 2023 May 31.
8
OpenMSCG: A Software Tool for Bottom-Up Coarse-Graining.OpenMSCG:一种用于自底向上粗粒化的软件工具。
J Phys Chem B. 2023 Oct 12;127(40):8537-8550. doi: 10.1021/acs.jpcb.3c04473. Epub 2023 Oct 4.

引用本文的文献

2
Molecular Dynamics Simulation of Cross-linked Epoxy Resins: Past and Future.交联环氧树脂的分子动力学模拟:过去与未来
Macromol Rapid Commun. 2025 Jul;46(14):e2400978. doi: 10.1002/marc.202400978. Epub 2025 May 4.
6
B-factor prediction in proteins using a sequence-based deep learning model.使用基于序列的深度学习模型预测蛋白质中的B因子。
Patterns (N Y). 2023 Aug 4;4(9):100805. doi: 10.1016/j.patter.2023.100805. eCollection 2023 Sep 8.
8
Bottom-up Coarse-Graining: Principles and Perspectives.自底向上粗粒化:原理与展望。
J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7.

本文引用的文献

7
Machine Learning of Coarse-Grained Molecular Dynamics Force Fields.粗粒度分子动力学力场的机器学习
ACS Cent Sci. 2019 May 22;5(5):755-767. doi: 10.1021/acscentsci.8b00913. Epub 2019 Apr 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验