Suppr超能文献

KATP通道对细胞代谢紊乱的敏感性及其潜在的结构基础。

Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.

作者信息

Li Chun-gang, Cui Wen-yu, Wang Hai

机构信息

Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China.

Cardiovascular Drug Research Center, Thadweik Academy of Medicine, Beijing 100039, China.

出版信息

Acta Pharmacol Sin. 2016 Jan;37(1):134-42. doi: 10.1038/aps.2015.134.

Abstract

AIM

ATP-sensitive potassium (KATP) channels formed by a combination of SUR/Kir6.x subunits play a crucial role in protection against hypoxic or ischemic injuries resulting from cell metabolic disorders. In this study we investigated the effects of Na-azide, a metabolic inhibitor, on KATP channels expressed in Xenopus oocytes, and explored the structure basis for their sensitivity to cell metabolic disorders.

METHODS

Six subtypes of KATP channels (wild SUR1/Kir6.2, SUR2B/Kir6.2, SUR1/Kir6.1, SUR2B/Kir6.1, SUR2A/Kir6.2 and SUR2A/Kir6.1), as well as eleven subtypes of KATP channels with mutant subunits were expressed in Xenopus oocytes. KATP currents were recorded using a two-electrode voltage clamp recording technique. The drugs were applied through bath.

RESULTS

Except SUR2A/Kir6.1, five subtypes of KATP channels were activated by Na-azide (3 mmol/L) with an order of the responses: SUR1/Kir6.2>SUR2B/Kir6.2>SUR1/Kir6.1>SUR2B/Kir6.1>SUR2A/Kir6.2, and the opening rate (t1/2) was SUR1/Kir6.x>SUR2B/Kir6.x>SUR2A/Kir6.2. Furthermore, Kir6.2, rather than Kir6.1, had intrinsic sensitivity to Na-azide, and the residues involved in ATP-binding (R50 and K185) or pH-sensing (H175) were associated with the sensitivity of the Kir6.2 subunit to Na-azide. Moreover, the residues (K707 and K1348) within the Walker A (WA) motifs of two nucleotide-binding domains (NBDs) were essential for SUR2B/Kir6.x (especially SUR2B/Kir6.1) channel activation by Na-azide, suggesting a key role for Mg-adenine nucleotide binding and/or hydrolysis in the SUR2B subunit.

CONCLUSION

Among the six subtypes of KATP channels, SUR1/Kir6.2 is the most sensitive, whereas SUR2A/Kir6.1 is insensitive, to cell metabolic disorders. The Kir6.2 subunit, rather than the Kir6.1 subunit, has intrinsic sensitivity to cell metabolic disorders. The residues (K707 and K1348) within the WA motifs of SUR2B are important for the sensitivity of SUR2B/Kir6.x channels to cell metabolic disorders.

摘要

目的

由SUR/Kir6.x亚基组合形成的ATP敏感性钾(KATP)通道在保护细胞免受因代谢紊乱导致的缺氧或缺血损伤中起关键作用。在本研究中,我们研究了代谢抑制剂叠氮化钠对非洲爪蟾卵母细胞中表达的KATP通道的影响,并探讨了它们对细胞代谢紊乱敏感性的结构基础。

方法

六种KATP通道亚型(野生型SUR1/Kir6.2、SUR2B/Kir6.2、SUR1/Kir6.1、SUR2B/Kir6.1、SUR2A/Kir6.2和SUR2A/Kir6.1)以及十一种带有突变亚基的KATP通道亚型在非洲爪蟾卵母细胞中表达。使用双电极电压钳记录技术记录KATP电流。药物通过浴槽施加。

结果

除SUR2A/Kir6.1外,五种KATP通道亚型被3 mmol/L叠氮化钠激活,反应顺序为:SUR1/Kir6.2>SUR2B/Kir6.2>SUR1/Kir6.1>SUR2B/Kir6.1>SUR2A/Kir6.2,开放速率(t1/2)为SUR1/Kir6.x>SUR2B/Kir6.x>SUR2A/Kir6.2。此外,Kir6.2而非Kir6.1对叠氮化钠具有内在敏感性,参与ATP结合(R50和K185)或pH感应(H175)的残基与Kir6.2亚基对叠氮化钠的敏感性相关。此外,两个核苷酸结合结构域(NBDs)的沃克A(WA)基序内的残基(K707和K1348)对于叠氮化钠激活SUR2B/Kir6.x(尤其是SUR2B/Kir6.1)通道至关重要,表明Mg-腺嘌呤核苷酸结合和/或水解在SUR2B亚基中起关键作用。

结论

在六种KATP通道亚型中,SUR1/Kir6.2对细胞代谢紊乱最敏感,而SUR2A/Kir6.1不敏感。Kir6.2亚基而非Kir6.1亚基对细胞代谢紊乱具有内在敏感性。SUR2B的WA基序内的残基(K707和K1348)对于SUR2B/Kir6.x通道对细胞代谢紊乱的敏感性很重要。

相似文献

1
Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
Acta Pharmacol Sin. 2016 Jan;37(1):134-42. doi: 10.1038/aps.2015.134.
2
3
The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.
J Physiol. 2007 Jun 15;581(Pt 3):1259-69. doi: 10.1113/jphysiol.2007.130211. Epub 2007 Mar 29.
5
Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition.
J Gen Physiol. 2008 Jan;131(1):43-58. doi: 10.1085/jgp.200709894. Epub 2007 Dec 17.
6
A mutation in the ATP-binding site of the Kir6.2 subunit of the KATP channel alters coupling with the SUR2A subunit.
J Physiol. 2007 Nov 1;584(Pt 3):743-53. doi: 10.1113/jphysiol.2007.143149. Epub 2007 Sep 13.
8
Potassium channel openers require ATP to bind to and act through sulfonylurea receptors.
EMBO J. 1998 Oct 1;17(19):5529-35. doi: 10.1093/emboj/17.19.5529.
9
Effects of ZD0947, a novel and potent ATP-sensitive K channel opener, on smooth muscle-type ATP-sensitive K channels.
Eur J Pharmacol. 2016 Nov 15;791:773-779. doi: 10.1016/j.ejphar.2016.09.038. Epub 2016 Sep 29.

引用本文的文献

2
Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K Channel Mutations in Intact Cells.
J Pharmacol Exp Ther. 2023 Sep;386(3):298-309. doi: 10.1124/jpet.123.001659. Epub 2023 Aug 1.
3
Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies.
Int J Mol Sci. 2022 Aug 21;23(16):9446. doi: 10.3390/ijms23169446.
4
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications.
Handb Exp Pharmacol. 2021;267:277-356. doi: 10.1007/164_2021_501.
5
Emerging roles for multifunctional ion channel auxiliary subunits in cancer.
Cell Calcium. 2019 Jun;80:125-140. doi: 10.1016/j.ceca.2019.04.005. Epub 2019 Apr 25.
6
Functional protection against cardiac diseases depends on ATP-sensitive potassium channels.
J Cell Mol Med. 2018 Dec;22(12):5801-5806. doi: 10.1111/jcmm.13893. Epub 2018 Sep 14.
7
8
Neonatal Diabetes and the K Channel: From Mutation to Therapy.
Trends Endocrinol Metab. 2017 May;28(5):377-387. doi: 10.1016/j.tem.2017.02.003. Epub 2017 Mar 3.
9
Cytomembrane ATP-sensitive K channels in neurovascular unit targets of ischemic stroke in the recovery period.
Exp Ther Med. 2016 Aug;12(2):1055-1059. doi: 10.3892/etm.2016.3373. Epub 2016 May 20.
10
Altered KATP Channel Subunits Expression and Vascular Reactivity in Spontaneously Hypertensive Rats With Age.
J Cardiovasc Pharmacol. 2016 Aug;68(2):143-9. doi: 10.1097/FJC.0000000000000394.

本文引用的文献

1
Cardiovascular protection of activating KATP channel during ischemia-reperfusion acidosis.
Shock. 2012 Jun;37(6):653-8. doi: 10.1097/SHK.0b013e318252caf6.
2
Muscle KATP channels: recent insights to energy sensing and myoprotection.
Physiol Rev. 2010 Jul;90(3):799-829. doi: 10.1152/physrev.00027.2009.
3
The intracellular localization and function of the ATP-sensitive K+ channel subunit Kir6.1.
J Membr Biol. 2010 Apr;234(2):137-47. doi: 10.1007/s00232-010-9241-x. Epub 2010 Mar 20.
4
Inwardly rectifying potassium channels: their structure, function, and physiological roles.
Physiol Rev. 2010 Jan;90(1):291-366. doi: 10.1152/physrev.00021.2009.
5
Human K(ATP) channelopathies: diseases of metabolic homeostasis.
Pflugers Arch. 2010 Jul;460(2):295-306. doi: 10.1007/s00424-009-0771-y. Epub 2009 Dec 24.
7
Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation.
J Cell Mol Med. 2008 Sep-Oct;12(5A):1559-70. doi: 10.1111/j.1582-4934.2007.00144.x.
8
Modeling K(ATP) channel gating and its regulation.
Prog Biophys Mol Biol. 2009 Jan;99(1):7-19. doi: 10.1016/j.pbiomolbio.2008.10.002. Epub 2008 Oct 17.
10
Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
Cardiovasc Res. 2008 Sep 1;79(4):621-31. doi: 10.1093/cvr/cvn138. Epub 2008 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验