Suppr超能文献

针对生物膜和细胞内细菌的强效抗菌纳米颗粒

Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria.

作者信息

Mu Haibo, Tang Jiangjiang, Liu Qianjin, Sun Chunli, Wang Tingting, Duan Jinyou

机构信息

College of science, Northwest A&F University, Yangling 712100, Shaanxi, China.

出版信息

Sci Rep. 2016 Jan 5;6:18877. doi: 10.1038/srep18877.

Abstract

The chronic infections related to biofilm and intracellular bacteria are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defenses. Herein we develop a facile approach to overcome the above conundrum through phosphatidylcholine-decorated Au nanoparticles loaded with gentamicin (GPA NPs). The nanoparticles were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet-visible (UV-vis) absorption spectra which demonstrated that GPA NPs with a diameter of approximately 180 nm were uniform. The loading manner and release behaviors were also investigated. The generated GPA NPs maintained their antibiotic activities against planktonic bacteria, but more effective to damage established biofilms and inhibited biofilm formation of pathogens including Gram-positive and Gram-negative bacteria. In addition, GPA NPs were observed to be nontoxic to RAW 264.7 cells and readily engulfed by the macrophages, which facilitated the killing of intracellular bacteria in infected macrophages. These results suggested GPA NPs might be a promising antibacterial agent for effective treatment of chronic infections due to microbial biofilm and intracellular bacteria.

摘要

与生物膜和细胞内细菌相关的慢性感染由于其对抗菌剂和宿主防御的固有抗性而总是难以治愈。在此,我们开发了一种简便的方法,通过负载庆大霉素的磷脂酰胆碱修饰金纳米颗粒(GPA NPs)来克服上述难题。通过扫描电子显微镜(SEM)、动态光散射(DLS)和紫外可见(UV-vis)吸收光谱对纳米颗粒进行了表征,结果表明直径约为180 nm的GPA NPs是均匀的。还研究了其负载方式和释放行为。所制备的GPA NPs对浮游细菌保持其抗生素活性,但对破坏已形成的生物膜更有效,并抑制包括革兰氏阳性菌和革兰氏阴性菌在内的病原体的生物膜形成。此外,观察到GPA NPs对RAW 264.7细胞无毒,并且容易被巨噬细胞吞噬,这有助于杀死感染巨噬细胞内的细菌。这些结果表明,GPA NPs可能是一种有前途的抗菌剂,可有效治疗由微生物生物膜和细胞内细菌引起的慢性感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a7/4700437/1b11846ff8ca/srep18877-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验