Suppr超能文献

使用R语言提取和分析离散的概要病理报告数据。

Extraction and analysis of discrete synoptic pathology report data using R.

作者信息

Boag Alexander

机构信息

Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.

出版信息

J Pathol Inform. 2015 Nov 27;6:62. doi: 10.4103/2153-3539.170649. eCollection 2015.

Abstract

BACKGROUND

Synoptic pathology reports can serve as a rich source of cancer information, particularly when the content is available as discrete electronic data fields. Our institution generates such reports as part of a province wide program in Ontario but the resulting data is not easily extracted and analyzed at the local level.

METHODS

A low cost system was developed using the open sourced and freely available R scripting/data analysis environment to parse synoptic report results into a dataframe and perform basic summary statistics.

RESULTS

As a pilot project text reports from 427 prostate needle biopsies were successfully read into R and the data elements split out and converted into appropriated data classes for analysis.

CONCLUSION

This approach provides a simple solution at minimal cost that can make discrete synoptic report data readily available for quality assurance and research activities.

摘要

背景

概要病理报告可作为癌症信息的丰富来源,尤其是当内容以离散的电子数据字段形式存在时。我们机构作为安大略省全省范围内项目的一部分生成此类报告,但在本地层面,由此产生的数据不易提取和分析。

方法

使用开源且免费可用的R脚本/数据分析环境开发了一个低成本系统,以将概要报告结果解析为数据框并进行基本的汇总统计。

结果

作为一个试点项目,来自427例前列腺穿刺活检的文本报告被成功读入R,数据元素被拆分并转换为适合分析的数据类别。

结论

这种方法以最低成本提供了一个简单的解决方案,可使离散的概要报告数据随时可用于质量保证和研究活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d21/4687157/66dab9785dfc/JPI-6-62-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验