Suppr超能文献

用于从病理报告文本预测当前操作术语代码的神经网络模型的构建与应用

Construction and Utilization of a Neural Network Model to Predict Current Procedural Terminology Codes from Pathology Report Texts.

作者信息

Ye Jay J

机构信息

Dahl-Chase Pathology Associates, Bangor, Maine, USA.

出版信息

J Pathol Inform. 2019 Apr 3;10:13. doi: 10.4103/jpi.jpi_3_19. eCollection 2019.

Abstract

BACKGROUND

At our department, each specimen was assigned a tentative current procedural terminology (CPT) code at accessioning. The codes were subject to subsequent changes by pathologist assistants and pathologists. After the cases had been finalized, their CPT codes went through a final verification step by coding staff, with the aid of a keyword-based CPT code-checking web application. Greater than 97% of the initial assignments were correct. This article describes the construction of a CPT code-predicting neural network model and its incorporation into the CPT code-checking application.

MATERIALS AND METHODS

R programming language was used. Pathology report texts and CPT codes for the cases finalized during January 1-November 30, 2018, were retrieved from the database. The order of the specimens was randomized before the data were partitioned into training and validation set. R Keras package was used for both model training and prediction. The chosen neural network had a three-layer architecture consisting of a word-embedding layer, a bidirectional long short-term memory (LSTM) layer, and a densely connected layer. It used concatenated header-diagnosis texts as the input.

RESULTS

The model predicted CPT codes in both the validation data set and the test data set with an accuracy of 97.5% and 97.6%, respectively. Closer examination of the test data set (cases from December 1 to 27, 2018) revealed two interesting observations. First, among the specimens that had incorrect initial CPT code assignments, the model disagreed with the initial assignments in 73.6% (117/159) and agreed in 26.4% (42/159). Second, the model identified nine additional specimens with incorrect CPT codes that had evaded all steps of checking.

CONCLUSIONS

A neural network model using report texts to predict CPT codes can achieve high accuracy in prediction and moderate sensitivity in error detection. Neural networks may play increasing roles in CPT coding in surgical pathology.

摘要

背景

在我们科室,每个标本在录入时都会被分配一个暂定的当前操作术语(CPT)代码。这些代码随后可能会由病理技师助理和病理学家进行更改。病例最终确定后,其CPT代码会在编码人员的协助下,借助一个基于关键词的CPT代码检查网络应用程序进行最终验证。超过97%的初始分配是正确的。本文描述了一个CPT代码预测神经网络模型的构建及其在CPT代码检查应用程序中的整合。

材料与方法

使用R编程语言。从数据库中检索了2018年1月1日至11月30日期间最终确定的病例的病理报告文本和CPT代码。在将数据划分为训练集和验证集之前,对标本顺序进行了随机化。R Keras包用于模型训练和预测。所选的神经网络具有三层架构,包括一个词嵌入层、一个双向长短期记忆(LSTM)层和一个全连接层。它使用拼接的标题 - 诊断文本作为输入。

结果

该模型在验证数据集和测试数据集中预测CPT代码的准确率分别为97.5%和97.6%。对测试数据集(2018年12月1日至27日的病例)的进一步检查揭示了两个有趣的发现。首先,在初始CPT代码分配错误的标本中,模型与初始分配不一致的占73.6%(117/159),一致的占26.4%(42/159)。其次,该模型识别出另外9个CPT代码错误的标本,这些标本在所有检查步骤中都未被发现。

结论

使用报告文本预测CPT代码的神经网络模型在预测方面可以达到高精度,在错误检测方面具有中等灵敏度。神经网络可能在外科病理学的CPT编码中发挥越来越重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315f/6489423/ad7f3e22b3a5/JPI-10-13-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验