Suppr超能文献

通过多图谱标签融合和随机森林分类对胸部CT扫描中的甲状腺进行自动分割。

Automated segmentation of the thyroid gland on thoracic CT scans by multiatlas label fusion and random forest classification.

作者信息

Narayanan Divya, Liu Jiamin, Kim Lauren, Chang Kevin W, Lu Le, Yao Jianhua, Turkbey Evrim B, Summers Ronald M

机构信息

National Institutes of Health Clinical Center , Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Building 10, Room 1C224, MSC 1182, Bethesda, Maryland 20892-1182, United States.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):044006. doi: 10.1117/1.JMI.2.4.044006. Epub 2015 Dec 30.

Abstract

The thyroid is an endocrine gland that regulates metabolism. Thyroid image analysis plays an important role in both diagnostic radiology and radiation oncology treatment planning. Low tissue contrast of the thyroid relative to surrounding anatomic structures makes manual segmentation of this organ challenging. This work proposes a fully automated system for thyroid segmentation on CT imaging. Following initial thyroid segmentation with multiatlas joint label fusion, a random forest (RF) algorithm was applied. Multiatlas label fusion transfers labels from labeled atlases and warps them to target images using deformable registration. A consensus atlas solution was formed based on optimal weighting of atlases and similarity to a given target image. Following the initial segmentation, a trained RF classifier employed voxel scanning to assign class-conditional probabilities to the voxels in the target image. Thyroid voxels were categorized with positive labels and nonthyroid voxels were categorized with negative labels. Our method was evaluated on CT scans from 66 patients, 6 of which served as atlases for multiatlas label fusion. The system with independent multiatlas label fusion method and RF classifier achieved average dice similarity coefficients of [Formula: see text] and [Formula: see text], respectively. The system with sequential multiatlas label fusion followed by RF correction increased the dice similarity coefficient to [Formula: see text] and improved the segmentation accuracy.

摘要

甲状腺是调节新陈代谢的内分泌腺。甲状腺图像分析在诊断放射学和放射肿瘤学治疗计划中都起着重要作用。甲状腺相对于周围解剖结构的组织对比度较低,使得对该器官进行手动分割具有挑战性。这项工作提出了一种用于CT成像中甲状腺分割的全自动系统。在用多图谱联合标签融合进行初始甲状腺分割之后,应用了随机森林(RF)算法。多图谱标签融合从标记的图谱转移标签,并使用可变形配准将它们扭曲到目标图像。基于图谱的最佳加权和与给定目标图像的相似性形成了共识图谱解决方案。在初始分割之后,经过训练的RF分类器采用体素扫描为目标图像中的体素分配类条件概率。甲状腺体素被分类为正标签,非甲状腺体素被分类为负标签。我们的方法在66名患者的CT扫描上进行了评估,其中6名作为多图谱标签融合的图谱。具有独立多图谱标签融合方法和RF分类器的系统分别实现了[公式:见正文]和[公式:见正文]的平均骰子相似系数。具有顺序多图谱标签融合随后进行RF校正的系统将骰子相似系数提高到[公式:见正文]并提高了分割精度。

相似文献

7
Patch spaces and fusion strategies in patch-based label fusion.基于图块的标签融合中的补丁空间和融合策略。
Comput Med Imaging Graph. 2019 Jan;71:79-89. doi: 10.1016/j.compmedimag.2018.11.004. Epub 2018 Dec 6.

本文引用的文献

2
Thyroid ultrasound.甲状腺超声检查。
Indian J Endocrinol Metab. 2013 Mar;17(2):219-27. doi: 10.4103/2230-8210.109667.
4
Non-local statistical label fusion for multi-atlas segmentation.非局部统计标签融合的多图谱分割。
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
5
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
6
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
8
10
Optimum template selection for atlas-based segmentation.基于图谱分割的最佳模板选择
Neuroimage. 2007 Feb 15;34(4):1612-8. doi: 10.1016/j.neuroimage.2006.07.050. Epub 2006 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验