Chubala Chrissy M, Johns Brendan T, Jamieson Randall K, Mewhort D J K
a Department of Psychology , University of Manitoba , Winnipeg , MB , Canada.
b Department of Communicative Disorders and Sciences , State University of New York at Buffalo , Buffalo , NY , USA.
Q J Exp Psychol (Hove). 2016;69(6):1049-55. doi: 10.1080/17470218.2015.1130068. Epub 2016 Feb 16.
Studies of implicit learning often examine peoples' sensitivity to sequential structure. Computational accounts have evolved to reflect this bias. An experiment conducted by Neil and Higham [Neil, G. J., & Higham, P. A.(2012). Implicit learning of conjunctive rule sets: An alternative to artificial grammars. Consciousness and Cognition, 21, 1393-1400] points to limitations in the sequential approach. In the experiment, participants studied words selected according to a conjunctive rule. At test, participants discriminated rule-consistent from rule-violating words but could not verbalize the rule. Although the data elude explanation by sequential models, an exemplar model of implicit learning can explain them. To make the case, we simulate the full pattern of results by incorporating vector representations for the words used in the experiment, derived from the large-scale semantic space models LSA and BEAGLE, into an exemplar model of memory, MINERVA 2. We show that basic memory processes in a classic model of memory capture implicit learning of non-sequential rules, provided that stimuli are appropriately represented.
内隐学习的研究常常考察人们对序列结构的敏感性。计算模型也不断发展以反映这种倾向。尼尔和海厄姆所做的一项实验(尼尔,G. J.,& 海厄姆,P. A.(2012)。合取规则集的内隐学习:人工语法的一种替代方法。《意识与认知》,21,1393 - 1400)指出了序列方法的局限性。在该实验中,参与者学习根据合取规则选择的单词。在测试时,参与者能够区分符合规则和违反规则的单词,但无法说出规则。尽管这些数据难以用序列模型来解释,但内隐学习的样例模型却可以解释它们。为了证明这一点,我们通过将从大规模语义空间模型LSA和BEAGLE中导出的、用于实验中单词的向量表示纳入记忆样例模型MINERVA 2,来模拟完整的结果模式。我们表明,只要刺激得到适当表征,经典记忆模型中的基本记忆过程就能捕捉非序列规则的内隐学习。