Loutherback Kevin, Birarda Giovanni, Chen Liang, Holman Hoi-Ying N
Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Protein Pept Lett. 2016;23(3):273-82. doi: 10.2174/0929866523666160106154035.
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.
生物学和生物医学科学领域长期以来的一个愿望是,能够在生物过程于活细胞内发生时探究细胞化学。基于同步辐射的傅里叶变换红外(SR-FTIR)光谱显微镜是一种无标记且无损的分析技术,它能够通过生物分子的特征振动模式提供样本中生物分子的时空分布和相对丰度。尽管近年来取得了巨大进展,但由于对环境控制的苛刻要求以及水对红外的强烈吸收,对活生物系统进行SR-FTIR成像仍然具有挑战性。为应对这一挑战,微流控装置已成为一种控制水层厚度的方法,同时还能提供一个适宜的环境,用于在数小时或数天内测量细胞过程和反应。本文将概述用于活生物系统SR-FTIR成像的微流控装置的发展情况,对比包括封闭通道和开放通道设计在内的各种技术,并讨论该领域未来的发展方向。即便基础科学和技术示范在不断发展,其他一些持续存在的问题也必须得到解决;例如,选择实验要求与设备能力紧密匹配的应用,以及制定有效完成开发周期的策略。这些都需要想象力、创造力和协作精神。