Le Thu Hac Huong, Matsushita Takumi, Ohta Ryoichi, Shimoda Yuta, Matsui Hiroaki, Kitamori Takehiko
Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, Tokyo 113-8654, Japan.
Micromachines (Basel). 2020 Nov 30;11(12):1062. doi: 10.3390/mi11121062.
Nanofluidic devices have offered us fascinating analytical platforms for chemical and bioanalysis by exploiting unique properties of liquids and molecules confined in nanospaces. The increasing interests in nanofluidic analytical devices have triggered the development of new robust and sensitive detection techniques, especially label-free ones. IR absorption spectroscopy is one of the most powerful biochemical analysis methods for identification and quantitative measurement of chemical species in the label-free and non-invasive fashion. However, the low sensitivity and the difficulties in fabrication of IR-compatible nanofluidic devices are major obstacles that restrict the applications of IR spectroscopy in nanofluidics. Here, we realized the bonding of CaF and SiO at room temperature and demonstrated an IR-compatible nanofluidic device that allowed the IR spectroscopy in a wide range of mid-IR regime. We also performed the integration of metal-insulator-metal perfect absorber metamaterials into nanofluidic devices for plasmon-enhanced infrared absorption spectroscopy with ultrahigh sensitivity. This study also shows a proof-of-concept of the multi-band absorber by combining different types of nanostructures. The results indicate the potential of implementing metamaterials in tracking several characteristic molecular vibrational modes simultaneously, making it possible to identify molecular species in mixture or complex biological entities.
纳米流体装置通过利用限制在纳米空间中的液体和分子的独特性质,为化学和生物分析提供了引人入胜的分析平台。对纳米流体分析装置日益增长的兴趣引发了新型稳健且灵敏的检测技术的发展,尤其是无标记检测技术。红外吸收光谱法是用于以无标记和非侵入方式识别和定量测量化学物质的最强大的生化分析方法之一。然而,低灵敏度以及制造与红外兼容的纳米流体装置的困难是限制红外光谱在纳米流体学中应用 的主要障碍。在此,我们实现了CaF和SiO在室温下的键合,并展示了一种与红外兼容的纳米流体装置,该装置在宽范围的中红外波段实现了红外光谱分析。我们还将金属-绝缘体-金属完美吸收体超材料集成到纳米流体装置中,用于具有超高灵敏度的等离子体增强红外吸收光谱分析。这项研究还通过结合不同类型的纳米结构展示了多波段吸收体的概念验证。结果表明了在同时跟踪几种特征分子振动模式方面实现超材料的潜力,从而有可能识别混合物或复杂生物实体中的分子种类。