Suppr超能文献

类药物化合物的组织受体组学指纹图谱。

Historeceptomic Fingerprints for Drug-Like Compounds.

作者信息

Shmelkov Evgeny, Grigoryan Arsen, Swetnam James, Xin Junyang, Tivon Doreen, Shmelkov Sergey V, Cardozo Timothy

机构信息

Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York, NY, USA.

Google Inc., Mountain View CA, USA.

出版信息

Front Physiol. 2015 Dec 18;6:371. doi: 10.3389/fphys.2015.00371. eCollection 2015.

Abstract

Most drugs exert their beneficial and adverse effects through their combined action on several different molecular targets (polypharmacology). The true molecular fingerprint of the direct action of a drug has two components: the ensemble of all the receptors upon which a drug acts and their level of expression in organs/tissues. Conversely, the fingerprint of the adverse effects of a drug may derive from its action in bystander tissues. The ensemble of targets is almost always only partially known. Here we describe an approach improving upon and integrating both components: in silico identification of a more comprehensive ensemble of targets for any drug weighted by the expression of those receptors in relevant tissues. Our system combines more than 300,000 experimentally determined bioactivity values from the ChEMBL database and 4.2 billion molecular docking scores. We integrated these scores with gene expression data for human receptors across a panel of human tissues to produce drug-specific tissue-receptor (historeceptomics) scores. A statistical model was designed to identify significant scores, which define an improved fingerprint representing the unique activity of any drug. These multi-dimensional historeceptomic fingerprints describe, in a novel, intuitive, and easy to interpret style, the holistic, in vivo picture of the mechanism of any drug's action. Valuable applications in drug discovery and personalized medicine, including the identification of molecular signatures for drugs with polypharmacologic modes of action, detection of tissue-specific adverse effects of drugs, matching molecular signatures of a disease to drugs, target identification for bioactive compounds with unknown receptors, and hypothesis generation for drug/compound phenotypes may be enabled by this approach. The system has been deployed at drugable.org for access through a user-friendly web site.

摘要

大多数药物通过对多种不同分子靶点的联合作用(多药理学)发挥其有益和不良作用。药物直接作用的真正分子指纹有两个组成部分:药物作用的所有受体的集合以及它们在器官/组织中的表达水平。相反,药物不良反应的指纹可能源于其在旁观者组织中的作用。靶点的集合几乎总是仅部分已知。在这里,我们描述了一种改进并整合这两个组成部分的方法:通过计算机模拟识别任何药物更全面的靶点集合,并根据这些受体在相关组织中的表达进行加权。我们的系统结合了来自ChEMBL数据库的30多万个实验确定的生物活性值和42亿个分子对接分数。我们将这些分数与一组人体组织中人类受体的基因表达数据整合,以生成药物特异性的组织 - 受体(组织受体组学)分数。设计了一个统计模型来识别显著分数,这些分数定义了一个改进的指纹,代表任何药物的独特活性。这些多维组织受体组学指纹以新颖、直观且易于解释的方式描述了任何药物作用机制的整体体内情况。这种方法可能在药物发现和个性化医疗中具有重要应用,包括识别具有多药理学作用模式的药物的分子特征、检测药物的组织特异性不良反应、将疾病的分子特征与药物匹配、识别具有未知受体的生物活性化合物的靶点以及生成药物/化合物表型的假设。该系统已部署在drugable.org上,可通过用户友好的网站访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc88/4683199/ac9a135ce78c/fphys-06-00371-g0001.jpg

相似文献

1
Historeceptomic Fingerprints for Drug-Like Compounds.类药物化合物的组织受体组学指纹图谱。
Front Physiol. 2015 Dec 18;6:371. doi: 10.3389/fphys.2015.00371. eCollection 2015.

引用本文的文献

5
Data sources for in vivo molecular profiling of human phenotypes.人类表型体内分子剖析的数据源。
Wiley Interdiscip Rev Syst Biol Med. 2016 Nov;8(6):472-484. doi: 10.1002/wsbm.1354. Epub 2016 Sep 7.

本文引用的文献

1
Structure-based predictions of activity cliffs.基于结构的活性悬崖预测。
J Chem Inf Model. 2015 May 26;55(5):1062-76. doi: 10.1021/ci500742b. Epub 2015 May 11.
2
Tools for in silico target fishing.用于计算机虚拟靶点筛选的工具。
Methods. 2015 Jan;71:98-103. doi: 10.1016/j.ymeth.2014.09.006. Epub 2014 Sep 30.
4
Proteome-scale docking: myth and reality.蛋白质组规模的对接:神话与现实
Drug Discov Today Technol. 2013 Sep;10(3):e403-9. doi: 10.1016/j.ddtec.2013.01.003.
5
BioGPS and MyGene.info: organizing online, gene-centric information.BioGPS 和 MyGene.info:组织在线的、以基因为中心的信息。
Nucleic Acids Res. 2013 Jan;41(Database issue):D561-5. doi: 10.1093/nar/gks1114. Epub 2012 Nov 21.
7
Pocketome: an encyclopedia of small-molecule binding sites in 4D.口袋组学:4D 中小分子结合位点的百科全书。
Nucleic Acids Res. 2012 Jan;40(Database issue):D535-40. doi: 10.1093/nar/gkr825. Epub 2011 Nov 12.
9
ChEMBL: a large-scale bioactivity database for drug discovery.ChEMBL:用于药物发现的大型生物活性数据库。
Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7. doi: 10.1093/nar/gkr777. Epub 2011 Sep 23.
10
PubChem3D: a new resource for scientists.PubChem3D:科学家的新资源。
J Cheminform. 2011 Sep 20;3(1):32. doi: 10.1186/1758-2946-3-32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验