Suppr超能文献

ATP敏感性钾通道与胰腺β细胞的爆发式电活动。一项理论研究。

ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study.

作者信息

Keizer J, Magnus G

机构信息

Department of Chemistry, University of California, Davis 95616.

出版信息

Biophys J. 1989 Aug;56(2):229-42. doi: 10.1016/S0006-3495(89)82669-4.

Abstract

Based on the existence of ATP-sensitive potassium channels in the plasma membrane of pancreatic beta cells, we develop a quantitative explanation of the electrical activity observed in pancreatic islets. The proposed mechanism involves the voltage-dependent inward calcium and outward potassium currents described by Rorsman and Trube (1986), which are voltage-activated when an increase in the cytoplasmic ATP/ADP ratio decreases the conductance of the ATP-sensitive potassium channels. It is proposed that modulation of the ATP/ADP ratio occurs through calcium inhibition of oxidative phosphorylation. In this picture the mitochondria serve as a transducer of metabolic activity whose sensitivity is modulated by cytosolic calcium. Solution of the differential equations that describe this mechanism gives rise to both bursting and continuous spiking electrical activity similar to that observed experimentally. While the mechanism for bursting in this model involves the ATP/ADP ratio, the feedback is still provided by calcium, as originally proposed by Chay and Keizer (1983) using a Ca2+-activated potassium conductance. A mixed-model, which includes both ATP-sensitive and Ca2+-activated potassium conductances, also reproduces the experimentally observed electrical activity and may correspond more closely to the actual situation in vivo.

摘要

基于胰腺β细胞质膜中存在ATP敏感性钾通道,我们对在胰岛中观察到的电活动进行了定量解释。所提出的机制涉及Rorsman和Trube(1986)描述的电压依赖性内向钙电流和外向钾电流,当细胞质中ATP/ADP比值增加导致ATP敏感性钾通道电导降低时,这些电流被电压激活。有人提出,ATP/ADP比值的调节是通过钙对氧化磷酸化的抑制来实现的。在这种情况下,线粒体作为代谢活动的传感器,其敏感性由胞质钙调节。描述该机制的微分方程的解产生了类似于实验观察到的爆发性和持续性尖峰电活动。虽然该模型中爆发的机制涉及ATP/ADP比值,但反馈仍然由钙提供,这是Chay和Keizer(1983)最初使用钙激活钾电导提出的。一个同时包括ATP敏感性和钙激活钾电导的混合模型,也再现了实验观察到的电活动,并且可能更接近于体内的实际情况。

相似文献

1
ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study.
Biophys J. 1989 Aug;56(2):229-42. doi: 10.1016/S0006-3495(89)82669-4.
2
Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing.
Biophys J. 1988 Sep;54(3):411-25. doi: 10.1016/S0006-3495(88)82975-8.
3
Bursting electrical activity in pancreatic beta cells caused by Ca(2+)- and voltage-inactivated Ca2+ channels.
Proc Natl Acad Sci U S A. 1991 May 1;88(9):3897-901. doi: 10.1073/pnas.88.9.3897.
5
Molecular biology of adenosine triphosphate-sensitive potassium channels.
Endocr Rev. 1999 Apr;20(2):101-35. doi: 10.1210/edrv.20.2.0361.
7
Theoretical studies on the electrical activity of pancreatic beta-cells as a function of glucose.
Biophys J. 1987 Jan;51(1):89-107. doi: 10.1016/S0006-3495(87)83314-3.
9

引用本文的文献

1
Model of Calcium Dynamics Regulating , ATP and Insulin Production in a Pancreatic -Cell.
Acta Biotheor. 2024 Feb 9;72(1):2. doi: 10.1007/s10441-024-09477-x.
2
Deconstructing the integrated oscillator model for pancreatic β-cells.
Math Biosci. 2023 Nov;365:109085. doi: 10.1016/j.mbs.2023.109085. Epub 2023 Oct 4.
4
Ca release or Ca entry, that is the question: what governs Ca oscillations in pancreatic β cells?
Am J Physiol Endocrinol Metab. 2023 Jun 1;324(6):E477-E487. doi: 10.1152/ajpendo.00030.2023. Epub 2023 Apr 19.
5
Coordination of pancreatic islet rhythmic activity by delayed negative feedback.
Am J Physiol Endocrinol Metab. 2022 Dec 1;323(6):E492-E502. doi: 10.1152/ajpendo.00123.2022. Epub 2022 Oct 12.
6
Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells.
Biophys J. 2022 Apr 19;121(8):1449-1464. doi: 10.1016/j.bpj.2022.03.015. Epub 2022 Mar 15.
7
Symbiosis of Electrical and Metabolic Oscillations in Pancreatic β-Cells.
Front Physiol. 2021 Dec 3;12:781581. doi: 10.3389/fphys.2021.781581. eCollection 2021.
10
Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.
Chem Rev. 2018 Dec 26;118(24):11707-11794. doi: 10.1021/acs.chemrev.8b00333. Epub 2018 Dec 14.

本文引用的文献

2
Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells.
FEBS Lett. 1984 May 7;170(1):196-200. doi: 10.1016/0014-5793(84)81398-8.
3
Anomeric specificity of hexose metabolism in pancreatic islets.
Physiol Rev. 1983 Jul;63(3):773-86. doi: 10.1152/physrev.1983.63.3.773.
4
Minimal model for membrane oscillations in the pancreatic beta-cell.
Biophys J. 1983 May;42(2):181-90. doi: 10.1016/S0006-3495(83)84384-7.
5
Regulation of insulin release by calcium.
Physiol Rev. 1981 Oct;61(4):914-73. doi: 10.1152/physrev.1981.61.4.914.
7
Intracellular ATP directly blocks K+ channels in pancreatic B-cells.
Nature. 1984;311(5983):271-3. doi: 10.1038/311271a0.
8
Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells.
Nature. 1984;311(5983):269-71. doi: 10.1038/311269a0.
9
Theoretical studies on the electrical activity of pancreatic beta-cells as a function of glucose.
Biophys J. 1987 Jan;51(1):89-107. doi: 10.1016/S0006-3495(87)83314-3.
10
Dissection of a model for neuronal parabolic bursting.
J Math Biol. 1987;25(6):653-75. doi: 10.1007/BF00275501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验