Suppr超能文献

一种神经元抛物线型爆发模型的剖析。

Dissection of a model for neuronal parabolic bursting.

作者信息

Rinzel J, Lee Y S

机构信息

Mathematical Research Branch, NIDDK, Bethesda, MD 20892.

出版信息

J Math Biol. 1987;25(6):653-75. doi: 10.1007/BF00275501.

Abstract

We have obtained new insight into the mechanisms for bursting in a class of theoretical models. We study Plant's model for Aplysia R-15 to illustrate our view of these so-called "parabolic" bursters, which are characterized by low spike frequency at the beginning and end of a burst. By identifying and analyzing the fast and slow processes we show how they interact mutually to generate spike activity and the slow wave which underlies the burst pattern. Our treatment is essentially the first step of a singular perturbation approach presented from a geometrical viewpoint and carried out numerically with AUTO. We determine the solution sets (steady state and oscillatory) of the fast subsystem with the slow variables treated as parameters. These solutions form the slow manifold over which the slow dynamics then define a burst trajectory. During the silent phase of a burst, the solution trajectory lies approximately on the steady state branch of the slow manifold and during the active phase of spiking, the trajectory sweeps through the oscillation branch. The parabolic nature of bursting arises from the (degenerate) homoclinic transition between the oscillatory branch and the steady state branch. We show that, for some parameter values, the trajectory remains strictly on the steady state branch (to produce a resting steady state or a pure slow wave without spike activity) or strictly in the oscillatory branch (continuous spike activity without silent phases). Plant's model has two slow variables: a calcium conductance and the intracellular free calcium concentration, which activates a potassium conductance. We also show how bursting arises from an alternative mechanism in which calcium inactivates the calcium current and the potassium conductance is insensitive to calcium. These and other biophysical interpretations are discussed.

摘要

我们对一类理论模型中的爆发机制有了新的认识。我们研究了普拉特提出的海兔R-15模型,以阐释我们对这些所谓“抛物线型”爆发神经元的看法,这类神经元的特点是在爆发开始和结束时的放电频率较低。通过识别和分析快过程和慢过程,我们展示了它们如何相互作用以产生放电活动以及构成爆发模式基础的慢波。我们的处理本质上是从几何观点出发并使用AUTO进行数值计算的奇异摄动方法的第一步。我们将慢变量视为参数来确定快子系统的解集(稳态和振荡态)。这些解形成慢流形,然后慢动力学在其上定义一个爆发轨迹。在爆发的静息阶段,解轨迹大致位于慢流形的稳态分支上,而在放电的活跃阶段,轨迹扫过振荡分支。爆发的抛物线性质源于振荡分支和稳态分支之间的(退化)同宿转变。我们表明,对于某些参数值,轨迹严格保持在稳态分支上(产生静息稳态或无放电活动的纯慢波)或严格位于振荡分支上(无静息阶段的连续放电活动)。普拉特模型有两个慢变量:一个钙电导和细胞内游离钙浓度,后者激活一个钾电导。我们还展示了爆发如何源于另一种机制,即钙使钙电流失活且钾电导对钙不敏感。我们讨论了这些以及其他生物物理学解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验