Romero-Urbina Dulce G, Lara Humberto H, Velázquez-Salazar J Jesús, Arellano-Jiménez M Josefina, Larios Eduardo, Srinivasan Anand, Lopez-Ribot Jose L, Yacamán Miguel José
Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA.
Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA; Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora C.P. 83000, México.
Beilstein J Nanotechnol. 2015 Dec 15;6:2396-405. doi: 10.3762/bjnano.6.246. eCollection 2015.
Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles.
银纳米颗粒提供了一种对抗细菌耐药性的可能方法。它们的大部分抗菌特性都归因于银离子。在本研究中,我们研究了带正电荷的银纳米颗粒对甲氧西林敏感金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌的作用。我们使用像差校正透射电子显微镜来检查银纳米颗粒的杀菌效果以及银纳米颗粒诱导的细菌超微结构变化。研究表明,我们平均粒径为1纳米的银纳米颗粒会导致细胞壁变薄和通透性增加、肽聚糖层不稳定,随后细胞内物质泄漏,从而导致细菌细胞裂解。我们推测,带正电荷的银纳米颗粒首先会与细菌磷壁酸的带负电荷的聚阴离子主链以及相关的细胞壁糖聚合物结合,从而对细胞壁的结构和通透性造成压力。这一推测为解释银纳米颗粒对金黄色葡萄球菌的抗菌作用提供了一个主要机制。未来的研究应集中于确定相关的分子机制及其对银纳米颗粒抗菌活性的重要性。