Suppr超能文献

肠道微生物群在沙门氏菌感染期间减少肠系膜淋巴结的定植和不依赖白细胞介素-12的干扰素-γ产生。

The Gut Microbiota Reduces Colonization of the Mesenteric Lymph Nodes and IL-12-Independent IFN-γ Production During Salmonella Infection.

作者信息

Fernández-Santoscoy María, Wenzel Ulf A, Yrlid Ulf, Cardell Susanna, Bäckhed Fredrik, Wick Mary Jo

机构信息

Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden.

Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden.

出版信息

Front Cell Infect Microbiol. 2015 Dec 22;5:93. doi: 10.3389/fcimb.2015.00093. eCollection 2015.

Abstract

The intestinal commensal microbiota is essential for many host physiological processes, but its impact on infectious diseases is poorly understood. Here we investigate the influence of the gut microbiota during oral Salmonella infection. We report a higher bacterial burden in mesenteric lymph nodes (MLN) of intragastrically infected germ-free (GF) mice compared to conventionally-raised (CONV-R) animals, despite similar inflammatory phagocyte recruitment. Salmonella penetration into the lamina propria of the small intestine and splenic bacterial burden were not altered in the absence of the microbiota. Intragastrically infected GF mice also displayed a higher frequency of IFN-γ-producing NK, NKT, CD4(+), and CD8(+) T cells in the MLN despite IL-12 levels similar to infected CONV-R mice. However, infecting mice intraperitoneally abrogated the difference in MLN bacterial load and IFN-γ-producing cells observed in intragastrically-infected animals. Moreover, mice treated with antibiotics (ABX) and intragastrically infected with Salmonella had a greater bacterial burden and frequency of IFN-γ-producing cells in the MLN. In ABX mice the number of Salmonella correlated with the frequency of IFN-γ-producing lymphocytes in the MLN, while no such correlation was observed in the MLN of infected GF mice. Overall, the data show that the lack of the microbiota influences pathogen colonization of the MLN, and the increased IFN-γ in the MLN of infected GF mice is not only due to the absence of commensals at the time of infection but the lack of immune signals provided by the microbiota from birth.

摘要

肠道共生微生物群对许多宿主生理过程至关重要,但其对传染病的影响却知之甚少。在此,我们研究肠道微生物群在口服沙门氏菌感染过程中的影响。我们报告称,与常规饲养(CONV-R)的动物相比,经胃内感染的无菌(GF)小鼠肠系膜淋巴结(MLN)中的细菌负荷更高,尽管炎症吞噬细胞的募集情况相似。在没有微生物群的情况下,沙门氏菌向小肠固有层的渗透以及脾脏中的细菌负荷并未改变。经胃内感染的GF小鼠在MLN中产生IFN-γ的NK、NKT、CD4(+)和CD8(+) T细胞的频率也更高,尽管其IL-12水平与感染的CONV-R小鼠相似。然而,通过腹腔内感染小鼠消除了在经胃内感染的动物中观察到的MLN细菌载量和产生IFN-γ细胞的差异。此外,用抗生素(ABX)处理并经胃内感染沙门氏菌的小鼠在MLN中的细菌负荷和产生IFN-γ细胞的频率更高。在ABX小鼠中,沙门氏菌的数量与MLN中产生IFN-γ的淋巴细胞频率相关,而在感染的GF小鼠的MLN中未观察到这种相关性。总体而言,数据表明微生物群的缺失会影响MLN中的病原体定植,并且感染的GF小鼠MLN中IFN-γ的增加不仅是由于感染时缺乏共生菌,还由于从出生起就缺乏微生物群提供的免疫信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4494/4687475/36e08ac3d0d3/fcimb-05-00093-g0001.jpg

相似文献

1
The Gut Microbiota Reduces Colonization of the Mesenteric Lymph Nodes and IL-12-Independent IFN-γ Production During Salmonella Infection.
Front Cell Infect Microbiol. 2015 Dec 22;5:93. doi: 10.3389/fcimb.2015.00093. eCollection 2015.
2
A reduced population of CD103(+)CD11b(+) dendritic cells has a limited impact on oral Salmonella infection.
Immunol Lett. 2016 Aug;176:72-80. doi: 10.1016/j.imlet.2016.05.012. Epub 2016 Jun 2.
3
Salmonella infection does not increase expression and activity of the high affinity IL-12 receptor.
J Immunol. 2000 Sep 15;165(6):3324-32. doi: 10.4049/jimmunol.165.6.3324.
4
9
IFN-gamma secreted by CD103+ dendritic cells leads to IgG generation in the mesenteric lymph node in the absence of vitamin A.
J Immunol. 2011 Jun 15;186(12):6999-7005. doi: 10.4049/jimmunol.1003484. Epub 2011 May 13.
10
T cell-mediated oral tolerance is intact in germ-free mice.
Clin Exp Immunol. 2006 Mar;143(3):503-12. doi: 10.1111/j.1365-2249.2006.03019.x.

引用本文的文献

2
What we need to know about the germ-free animal models.
AIMS Microbiol. 2024 Feb 6;10(1):107-147. doi: 10.3934/microbiol.2024007. eCollection 2024.
4
Alterations of lung microbial communities in obese allergic asthma and metabolic potential.
PLoS One. 2021 Oct 28;16(10):e0256848. doi: 10.1371/journal.pone.0256848. eCollection 2021.
5
Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies.
Front Cell Infect Microbiol. 2021 Sep 21;11:711055. doi: 10.3389/fcimb.2021.711055. eCollection 2021.
6
Gut Microbiome Influences the Efficacy of PD-1 Antibody Immunotherapy on MSS-Type Colorectal Cancer via Metabolic Pathway.
Front Microbiol. 2020 Apr 30;11:814. doi: 10.3389/fmicb.2020.00814. eCollection 2020.
7
Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria.
Front Physiol. 2018 Oct 31;9:1534. doi: 10.3389/fphys.2018.01534. eCollection 2018.
9
Microbiota Reconstitution Does Not Cause Bone Loss in Germ-Free Mice.
mSphere. 2018 Jan 3;3(1). doi: 10.1128/mSphereDirect.00545-17. eCollection 2018 Jan-Feb.
10
Gnotobiotic mouse model's contribution to understanding host-pathogen interactions.
Cell Mol Life Sci. 2016 Oct;73(20):3961-9. doi: 10.1007/s00018-016-2341-8. Epub 2016 Aug 20.

本文引用的文献

1
Antibiotics promote inflammation through the translocation of native commensal colonic bacteria.
Gut. 2016 Jul;65(7):1100-9. doi: 10.1136/gutjnl-2014-309059. Epub 2015 Jun 4.
3
Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon.
Mucosal Immunol. 2015 Jan;8(1):198-210. doi: 10.1038/mi.2014.58. Epub 2014 Jul 9.
4
The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria.
Immunity. 2014 Feb 20;40(2):262-73. doi: 10.1016/j.immuni.2014.01.003. Epub 2014 Feb 6.
5
Microbial modulation of energy availability in the colon regulates intestinal transit.
Cell Host Microbe. 2013 Nov 13;14(5):582-90. doi: 10.1016/j.chom.2013.09.012.
6
Microbiota-mediated colonization resistance against intestinal pathogens.
Nat Rev Immunol. 2013 Nov;13(11):790-801. doi: 10.1038/nri3535. Epub 2013 Oct 7.
7
Assessing the human gut microbiota in metabolic diseases.
Diabetes. 2013 Oct;62(10):3341-9. doi: 10.2337/db13-0844.
8
Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens.
Nature. 2013 Oct 3;502(7469):96-9. doi: 10.1038/nature12503. Epub 2013 Sep 1.
9
Control of pathogens and pathobionts by the gut microbiota.
Nat Immunol. 2013 Jul;14(7):685-90. doi: 10.1038/ni.2608.
10
Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells.
Nature. 2013 Feb 7;494(7435):116-20. doi: 10.1038/nature11809. Epub 2013 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验