Suppr超能文献

利用创新型异常值检测基于群体的状态空间模型中动态的离散变化。

Using Innovative Outliers to Detect Discrete Shifts in Dynamics in Group-Based State-Space Models.

作者信息

Chow Sy-Miin, Hamaker Ellen L, Allaire Jason C

机构信息

a University of North Carolina.

b Utrecht University.

出版信息

Multivariate Behav Res. 2009 Jul 31;44(4):465-96. doi: 10.1080/00273170903103324.

Abstract

Outliers are typically regarded as data anomalies that should be discarded. However, dynamic or "innovative" outliers can be appropriately utilized to capture unusual but substantively meaningful shifts in a system's dynamics. We extend De Jong and Penzer's 1998 approach for representing outliers in single-subject state-space models to a group-based framework. The group-based model enables model predictions concerning the group as a whole while individualized change points are incorporated to capture discrete shifts in each individual's trajectory. An illustrative example using cognitive performance data from N = 38 older adults over 60 days is presented. Results indicated that a subset of older adults showed sudden shifts in learning dynamics in several forms, including sudden jumps in level, slope, and linkage between perceived control and actual performance level. The broader implications of incorporating innovative outliers into studies of intraindividual change are discussed.

摘要

异常值通常被视为应被舍弃的数据异常情况。然而,动态或“创新性”异常值可被适当地用于捕捉系统动态中不寻常但具有实质意义的变化。我们将德容和彭泽1998年在单主体状态空间模型中表示异常值的方法扩展到基于群体的框架。基于群体的模型能够对整个群体进行模型预测,同时纳入个体变化点以捕捉每个个体轨迹中的离散变化。给出了一个使用来自38名60岁以上老年人60天认知表现数据的示例。结果表明,一部分老年人在学习动态方面出现了几种形式的突然变化,包括水平、斜率的突然跃升,以及感知控制与实际表现水平之间的联系。讨论了将创新性异常值纳入个体内部变化研究的更广泛意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验