Suppr超能文献

摘要:单病例设计中自相关的Meta分析。

Abstract: A Meta-Analysis of the Autocorrelation in Single Case Designs.

作者信息

Boyajian Jonathan G, Shadish William R

机构信息

a University of California , Merced.

出版信息

Multivariate Behav Res. 2011 Nov 30;46(6):1009. doi: 10.1080/00273171.2011.636692.

Abstract

Single case design (SCD) experiments in the behavioral sciences utilize just one participant from whom data is collected over time. This design permits causal inferences to be made regarding various intervention effects, often in clinical or educational settings, and is especially valuable when between-participant designs are not feasible or when interest lies in the effects of an individualized treatment. Regression techniques are the most common quantitative practice for analyzing time series data and provide parameter estimates for both treatment and trend effects. However, the presence of serially correlated residuals, known as autocorrelation, can severely bias inferences made regarding these parameter estimates. Despite the severity of the issue, few researchers test or correct for the autocorrelation in their analyses. Shadish and Sullivan (in press) recently conducted a meta-analysis of over 100 studies in order to assess the prevalence of the autocorrelation in the SCD literature. Although they found that the meta-analytic weighted average of the autocorrelation was close to zero, the distribution of autocorrelations was found to be highly heterogeneous. Using the same set of SCDs, the current study investigates various factors that may be related to the variation in autocorrelation estimates (e.g., study and outcome characteristics). Multiple moderator variables were coded for each study and then used in a metaregression in order to estimate the impact these predictor variables have on the autocorrelation. This current study investigates the autocorrelation using a multilevel meta-analytic framework. Although meta-analyses involve nested data structures (e.g., effect sizes nested within studies nested within journals), there are few instances of meta-analysts utilizing multilevel frameworks with more than two levels. This is likely attributable to the fact that very few software packages allow for meta-analyses to be conducted with more than two levels and those that do allow this provide sparse documentation on how to implement these models. The proposed presentation discusses methods for carrying out a multilevel meta-analysis. The presentation also discusses the findings from the metaregression on the autocorrelation and the implications these findings have on SCDs.

摘要

行为科学中的单案例设计(SCD)实验仅使用一名参与者,并随着时间的推移收集其数据。这种设计允许对各种干预效果进行因果推断,这在临床或教育环境中经常出现,当参与者间设计不可行或关注个性化治疗的效果时,这种设计尤其有价值。回归技术是分析时间序列数据最常用的定量方法,可提供治疗效果和趋势效果的参数估计。然而,存在序列相关残差(即自相关)会严重影响对这些参数估计所做的推断。尽管这个问题很严重,但很少有研究人员在分析中检验或校正自相关。沙迪什和沙利文(即将出版)最近对100多项研究进行了一项元分析,以评估SCD文献中自相关的普遍性。尽管他们发现自相关的元分析加权平均值接近零,但自相关的分布却高度异质。本研究使用同一组SCD,调查了可能与自相关估计值变化相关的各种因素(如研究和结果特征)。为每项研究编码了多个调节变量,然后将其用于元回归,以估计这些预测变量对自相关的影响。本研究使用多层次元分析框架研究自相关。尽管元分析涉及嵌套数据结构(如效应量嵌套在期刊内的研究中),但很少有元分析人员使用超过两个层次的多层次框架。这可能是因为很少有软件包允许进行超过两个层次的元分析,而那些允许这样做的软件包在如何实现这些模型方面提供的文档很少。拟议中的报告讨论了进行多层次元分析的方法。该报告还讨论了自相关元回归的结果以及这些结果对SCD的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验