Mukaeda Takayuki, Shima Keisuke
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:921-924. doi: 10.1109/EMBC.2017.8036975.
This paper proposes a novel sequential pattern recognition method enabling calculation of a posteriori probability for learned and unlearned classes. In this approach, probability density functions of unlearned classes are incorporated in a hiddenMarkov model to classify undefined classes via model parameter estimation using given learning samples. The technique can be applied to various pattern recognition problems such as motion classification with electromyogram (EMG) signals and in support for disease diagnosis. In the experiments conducted, motion classification from EMG signals was implemented with three subjects for eight learned/unlearned forearm motions. The proposed method produced higher levels of classification performance (learned motions: 90.13%; unlearned motions: 91.25%) than previous approaches. The results demonstrated the effectiveness of the technique.
本文提出了一种新颖的序列模式识别方法,能够计算已学习和未学习类别的后验概率。在这种方法中,未学习类别的概率密度函数被纳入隐马尔可夫模型,通过使用给定的学习样本进行模型参数估计来对未定义类别进行分类。该技术可应用于各种模式识别问题,如利用肌电图(EMG)信号进行运动分类以及辅助疾病诊断。在所进行的实验中,针对三名受试者的八种已学习/未学习的前臂运动,利用EMG信号进行了运动分类。与先前的方法相比,所提出的方法产生了更高水平的分类性能(已学习运动:90.13%;未学习运动:91.25%)。结果证明了该技术的有效性。