Bakstein Eduard, Schneider Jakub, Sieger Tomas, Novak Daniel, Wild Jiri, Jech Robert
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1524-7. doi: 10.1109/EMBC.2015.7318661.
Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.
在细胞外微电极记录(MER)中,准确检测干净的信号段对于在MER研究中保持高信噪比至关重要。现有的手动信号检查替代方法基于无监督的变化点检测。我们提出了一种基于功率谱密度(PSD)的监督式MER伪迹分类方法,并在一个包含95个标记MER信号的数据库上评估了其性能。所提出的方法在测试集上的准确率为90%,接近注释的准确率(94%)。无监督方法在训练和测试数据上的准确率约为77%。