Suppr超能文献

使用功率谱密度对微电极记录伪迹进行监督分割

Supervised segmentation of microelectrode recording artifacts using power spectral density.

作者信息

Bakstein Eduard, Schneider Jakub, Sieger Tomas, Novak Daniel, Wild Jiri, Jech Robert

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1524-7. doi: 10.1109/EMBC.2015.7318661.

Abstract

Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.

摘要

在细胞外微电极记录(MER)中,准确检测干净的信号段对于在MER研究中保持高信噪比至关重要。现有的手动信号检查替代方法基于无监督的变化点检测。我们提出了一种基于功率谱密度(PSD)的监督式MER伪迹分类方法,并在一个包含95个标记MER信号的数据库上评估了其性能。所提出的方法在测试集上的准确率为90%,接近注释的准确率(94%)。无监督方法在训练和测试数据上的准确率约为77%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验