Suppr超能文献

微电极记录中伪迹的自动检测方法。

Methods for automatic detection of artifacts in microelectrode recordings.

机构信息

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic; Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.

出版信息

J Neurosci Methods. 2017 Oct 1;290:39-51. doi: 10.1016/j.jneumeth.2017.07.012. Epub 2017 Jul 20.

Abstract

BACKGROUND

Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database.

NEW METHOD

We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients.

COMPARISON WITH EXISTING METHODS

The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results.

RESULTS

The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%).

CONCLUSION

We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts.

摘要

背景

细胞外微电极记录(MER)是研究细胞外单个神经元活动的重要技术。为了在更复杂的分析管道中获得稳健的结果,有必要拥有具有低伪影数量的高质量输入数据。我们发现,噪声(主要是电磁干扰和运动伪影)可能会影响临床 MER 数据库中超过 25%的记录长度。

新方法

我们提出了几种用于自动检测 MER 信号中噪声的方法,基于(i)静止段的无监督检测,(ii)功率谱密度中的大峰值,以及(iii)基于多个时频域特征的分类器。我们在一个由 58 名帕金森病患者的 5735 个十秒 MER 信号组成的手动注释数据库上评估了所提出的方法。

与现有方法的比较

已经经过严格测试的单通道 MER 中用于检测伪影的现有方法基于无监督的变点检测。我们在广泛的真实 MER 数据库上表明,所提出的技术更适合于伪影识别任务,并且可以取得更好的结果。

结果

表现最好的分类器(袋装和决策树)在未见过的测试集上实现了高达 89%的伪影分类准确率,并比无监督技术高出 5-10%。这接近使用手动注释的评估者之间的一致性水平(93.5%)。

结论

我们得出结论,所提出的方法适用于自动 MER 去噪,并可能有助于有效消除不需要的信号伪影。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验