Suppr超能文献

基于噪声水平和神经元活动的微电极记录的自动丘脑底核检测。

Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity.

机构信息

Department of Clinical Neurology, University of Oxford, UK.

出版信息

J Neural Eng. 2011 Aug;8(4):046006. doi: 10.1088/1741-2560/8/4/046006. Epub 2011 May 31.

Abstract

Microelectrode recording (MER) along surgical trajectories is commonly applied for refinement of the target location during deep brain stimulation (DBS) surgery. In this study, we utilize automatically detected MER features in order to locate the subthalamic nucleus (STN) employing an unsupervised algorithm. The automated algorithm makes use of background noise level, compound firing rate and power spectral density along the trajectory and applies a threshold-based method to detect the dorsal and the ventral borders of the STN. Depending on the combination of measures used for detection of the borders, the algorithm allocates confidence levels for the annotation made (i.e. high, medium and low). The algorithm has been applied to 258 trajectories obtained from 84 STN DBS implantations. MERs used in this study have not been pre-selected or pre-processed and include all the viable measurements made. Out of 258 trajectories, 239 trajectories were annotated by the surgical team as containing the STN versus 238 trajectories by the automated algorithm. The agreement level between the automatic annotations and the surgical annotations is 88%. Taking the surgical annotations as the golden standard, across all trajectories, the algorithm made true positive annotations in 231 trajectories, true negative annotations in 12 trajectories, false positive annotations in 7 trajectories and false negative annotations in 8 trajectories. We conclude that our algorithm is accurate and reliable in automatically identifying the STN and locating the dorsal and ventral borders of the nucleus, and in a near future could be implemented for on-line intra-operative use.

摘要

微电极记录(MER)沿着手术轨迹常用于在深部脑刺激(DBS)手术中细化目标位置。在这项研究中,我们利用自动检测的 MER 特征,通过无监督算法定位丘脑底核(STN)。自动算法利用轨迹上的背景噪声水平、复合放电率和功率谱密度,并采用基于阈值的方法来检测 STN 的背侧和腹侧边界。根据用于检测边界的措施组合,算法为所做的注释分配置信水平(即高、中、低)。该算法已应用于 84 例 STN-DBS 植入术中获得的 258 条轨迹。本研究中使用的 MER 未经过预先选择或预处理,包括所有可行的测量值。在 258 条轨迹中,有 239 条轨迹被手术团队注释为包含 STN,而有 238 条轨迹被自动算法注释为包含 STN。自动注释与手术注释之间的一致性水平为 88%。以手术注释为金标准,在所有轨迹中,算法在 231 条轨迹中做出了真正的阳性注释,在 12 条轨迹中做出了真正的阴性注释,在 7 条轨迹中做出了假阳性注释,在 8 条轨迹中做出了假阴性注释。我们得出结论,我们的算法在自动识别 STN 和定位核的背侧和腹侧边界方面是准确和可靠的,并有望在不久的将来实现术中在线使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验