Suppr超能文献

脑对脑连接中的图论:一项模拟研究及在脑电图超扫描实验中的应用

Graph theory in brain-to-brain connectivity: A simulation study and an application to an EEG hyperscanning experiment.

作者信息

Toppi J, Ciaramidaro A, Vogel P, Mattia D, Babiloni F, Siniatchkin M, Astolfi L

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2211-4. doi: 10.1109/EMBC.2015.7318830.

Abstract

Hyperscanning consists in the simultaneous recording of hemodynamic or neuroelectrical signals from two or more subjects acting in a social context. Well-established methodologies for connectivity estimation have already been adapted to hyperscanning purposes. The extension of graph theory approach to multi-subjects case is still a challenging issue. In the present work we aim to test the ability of the currently used graph theory global indices in describing the properties of a network given by two interacting subjects. The testing was conducted first on surrogate brain-to-brain networks reproducing typical social scenarios and then on real EEG hyperscanning data recorded during a Joint Action task. The results of the simulation study highlighted the ability of all the investigated indexes in modulating their values according to the level of interaction between subjects. However, only global efficiency and path length indexes demonstrated to be sensitive to an asymmetry in the communication between the two subjects. Such results were, then, confirmed by the application on real EEG data. Global efficiency modulated, in fact, their values according to the inter-brain density, assuming higher values in the social condition with respect to the non-social condition.

摘要

超扫描包括在社会情境中同时记录两个或更多受试者的血流动力学或神经电信号。已有的成熟连接性估计方法已经被应用于超扫描目的。将图论方法扩展到多受试者情况仍然是一个具有挑战性的问题。在本研究中,我们旨在测试当前使用的图论全局指标在描述由两个相互作用的受试者组成的网络特性方面的能力。首先在再现典型社会场景的替代脑对脑网络上进行测试,然后在联合行动任务期间记录的真实脑电图超扫描数据上进行测试。模拟研究结果突出了所有研究指标根据受试者之间的相互作用水平调节其值的能力。然而,只有全局效率和路径长度指标被证明对两个受试者之间通信的不对称敏感。然后,这些结果通过在真实脑电图数据上的应用得到了证实。事实上,全局效率根据脑间密度调节其值,在社会条件下相对于非社会条件具有更高的值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验