Scherer Reinhold, Faller Josef, Opisso Eloy, Costa Ursula, Steyrl David, Muller-Putz Gernot R
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2323-6. doi: 10.1109/EMBC.2015.7318858.
Non-stationarity and inherent variability of the noninvasive electroencephalogram (EEG) makes robust recognition of spontaneous EEG patterns challenging. Reliable modulation of EEG patterns that a BCI can robustly detect is a skill that users must learn. In this paper, we present a novel online co-adaptive BCI training paradigm. The system autonomously screens users for their ability to modulate EEG patterns in a predictive way and adapts its model parameters online. Results of a supporting study in seven first-time BCI users with disability are very encouraging. Three of 7 users achieved online accuracy > 70% for 2-class BCI control after 24 minutes of training. Online performance in 6 of 7 users was significantly higher than chance level. Online control was based on one single bipolar EEG channel. Beta band activity carried most discriminant information. Our fully automatic co-adaptive online approach allows to evaluate whether user benefit from current BCI technology within a reasonable timescale.
无创脑电图(EEG)的非平稳性和固有变异性使得对自发EEG模式进行可靠识别具有挑战性。脑机接口(BCI)能够可靠检测的EEG模式的可靠调节是用户必须掌握的一项技能。在本文中,我们提出了一种新颖的在线协同自适应BCI训练范式。该系统会自动筛选用户以预测方式调节EEG模式的能力,并在线调整其模型参数。一项针对7名首次使用BCI的残疾用户的支持性研究结果非常令人鼓舞。7名用户中有3名在训练24分钟后,二类BCI控制的在线准确率超过了70%。7名用户中有6名的在线表现显著高于随机水平。在线控制基于单个双极EEG通道。β波段活动携带了最具判别力的信息。我们的全自动协同自适应在线方法能够在合理的时间范围内评估用户是否能从当前的BCI技术中受益。