Suppr超能文献

高通滤波对基于独立成分分析的脑电图-事件相关电位伪迹减少的影响

On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

作者信息

Winkler Irene, Debener Stefan, Müller Klaus-Robert, Tangermann Michael

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5. doi: 10.1109/EMBC.2015.7319296.

Abstract

Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

摘要

用于脑电图(EEG)信号的标准伪迹去除方法要么基于独立成分分析(ICA),要么通过对在眼电图(EOG)通道测量的眼部活动进行回归来去除。基于ICA的成功伪迹减少依赖于合适的预处理。在这里,我们系统地评估了不同频率下高通滤波的效果。离线分析基于21名参与者执行标准听觉Oddball任务的事件相关电位数据以及一种自动伪迹成分分类器方法(MARA)。作为ICA的预处理步骤,在1-2Hz之间进行高通滤波在信噪比(SNR)、单次试验分类准确率和“近偶极”ICA成分百分比方面始终产生良好的结果。相对于未进行伪迹减少,基于ICA的伪迹去除显著提高了SNR和分类准确率。基于回归的去除EOG伪迹的方法则并非如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验