Suppr超能文献

先前的运动任务表现会影响基于相位的脑电图静息态连接状态。

Previous motor task performance impacts phase-based EEG resting-state connectivity states.

作者信息

Rosjat Nils, Hommelsen Maximilian, Fink Gereon R, Daun Silvia

机构信息

Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.

Medical Faculty, University Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany.

出版信息

Imaging Neurosci (Camb). 2024 Mar 14;2. doi: 10.1162/imag_a_00109. eCollection 2024.

Abstract

The resting human brain cycles through distinct states that can be analyzed using microstate analysis and electroencephalography (EEG) data. This approach classifies multichannel EEG data into spontaneously interchanging microstates based on topographic features. These microstates may be valuable biomarkers in neurodegenerative diseases since they reflect the resting brain's state. However, microstates do not provide information about the active neural networks during the resting state. This article presents an alternative and complementary method for analyzing resting-state EEG data and demonstrates its reproducibility and reliability. This method considers cerebral connectivity states defined by phase synchronization and measured using the corrected imaginary phase-locking value (ciPLV) based on source-reconstructed EEG recordings. We analyzed resting-state EEG data from young, healthy participants acquired on five consecutive days before and after a motor task. We show that our data reproduce microstates previously reported. Further, we reveal four stable topographic patterns over the multiple recording sessions in the source connectivity space. While the classical microstates were unaffected by a preceding motor task, the connectivity states were altered, reflecting the suppression of frontal activity in the post-movement resting state.

摘要

静息状态下的人类大脑会经历不同的状态,这些状态可以通过微状态分析和脑电图(EEG)数据进行分析。这种方法根据地形特征将多通道EEG数据分类为自发交替的微状态。这些微状态可能是神经退行性疾病中有价值的生物标志物,因为它们反映了静息大脑的状态。然而,微状态并不能提供静息状态下活跃神经网络的信息。本文提出了一种分析静息态EEG数据的替代且互补的方法,并证明了其可重复性和可靠性。该方法考虑了由相位同步定义并基于源重建EEG记录使用校正虚部锁相值(ciPLV)测量的大脑连接状态。我们分析了年轻健康参与者在一项运动任务前后连续五天采集的静息态EEG数据。我们表明我们的数据重现了先前报道的微状态。此外,我们在源连接空间的多个记录时段中揭示了四种稳定的地形模式。虽然经典微状态不受先前运动任务的影响,但连接状态发生了改变,反映了运动后静息状态下额叶活动的抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346a/12247568/faaf5929eb04/imag_a_00109_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验