Suppr超能文献

基于隐马尔可夫模型的惯性传感器步态分割策略:在老年、偏瘫患者和亨廷顿病患者中的应用

Hidden Markov model-based strategy for gait segmentation using inertial sensors: Application to elderly, hemiparetic patients and Huntington's disease patients.

作者信息

Mannini Andrea, Trojaniello Diana, Della Croce Ugo, Sabatini Angelo M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5179-82. doi: 10.1109/EMBC.2015.7319558.

Abstract

A solution to discriminate stance and swing in both healthy and abnormal gait using inertial sensors is proposed. The method is based on a two states hidden Markov model trained in a supervised way. The proposed method can generalize across different groups of subjects, without the need of parameters tuning. Leave-one-subject-out validation tests showed 20 ms and 16 ms errors on average in the determination of foot strike and toe off events across the three groups of subjects including 10 elderly, 10 hemiparetic patients and 10 Huntington's disease patients. The proposed methodology can be implemented online in portable devices to be used in clinical practice or in everyday personal health assessment.

摘要

提出了一种使用惯性传感器区分健康和异常步态中站立和摆动阶段的解决方案。该方法基于以监督方式训练的双状态隐马尔可夫模型。所提出的方法可以推广到不同组的受试者,无需调整参数。留一受试者交叉验证测试表明,在包括10名老年人、10名偏瘫患者和10名亨廷顿舞蹈症患者的三组受试者中,确定足跟着地和足趾离地事件时平均误差分别为20毫秒和16毫秒。所提出的方法可以在便携式设备上在线实现,用于临床实践或日常个人健康评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验