Laidig Daniel, Jocham Andreas J, Guggenberger Bernhard, Adamer Klemens, Fischer Michael, Seel Thomas
Control Systems Group, Technische Universität Berlin, Berlin, Germany.
Institute of Physiotherapy, FH JOANNEUM University of Applied Sciences, Graz, Austria.
Front Digit Health. 2021 Nov 4;3:736418. doi: 10.3389/fdgth.2021.736418. eCollection 2021.
Walking is a central activity of daily life, and there is an increasing demand for objective measurement-based gait assessment. In contrast to stationary systems, wearable inertial measurement units (IMUs) have the potential to enable non-restrictive and accurate gait assessment in daily life. We propose a set of algorithms that uses the measurements of two foot-worn IMUs to determine major spatiotemporal gait parameters that are essential for clinical gait assessment: durations of five gait phases for each side as well as stride length, walking speed, and cadence. Compared to many existing methods, the proposed algorithms neither require magnetometers nor a precise mounting of the sensor or dedicated calibration movements. They are therefore suitable for unsupervised use by non-experts in indoor as well as outdoor environments. While previously proposed methods are rarely validated in pathological gait, we evaluate the accuracy of the proposed algorithms on a very broad dataset consisting of 215 trials and three different subject groups walking on a treadmill: healthy subjects ( = 39), walking at three different speeds, as well as orthopedic ( = 62) and neurological ( = 36) patients, walking at a self-selected speed. The results show a very strong correlation of all gait parameters (Pearson's between 0.83 and 0.99, < 0.01) between the IMU system and the reference system. The mean absolute difference (MAD) is 1.4 % for the gait phase durations, 1.7 cm for the stride length, 0.04 km/h for the walking speed, and 0.7 steps/min for the cadence. We show that the proposed methods achieve high accuracy not only for a large range of walking speeds but also in pathological gait as it occurs in orthopedic and neurological diseases. In contrast to all previous research, we present calibration-free methods for the estimation of gait phases and spatiotemporal parameters and validate them in a large number of patients with different pathologies. The proposed methods lay the foundation for ubiquitous unsupervised gait assessment in daily-life environments.
行走是日常生活的核心活动,基于客观测量的步态评估需求日益增长。与固定系统相比,可穿戴惯性测量单元(IMU)有潜力在日常生活中实现非限制性且准确的步态评估。我们提出了一组算法,该算法利用两个佩戴在脚上的IMU的测量数据来确定临床步态评估所需的主要时空步态参数:每侧五个步态阶段的持续时间以及步幅、步行速度和步频。与许多现有方法相比,所提出的算法既不需要磁力计,也不需要精确安装传感器或进行专门的校准运动。因此,它们适用于非专业人员在室内和室外环境中进行无监督使用。虽然先前提出的方法很少在病理步态中得到验证,但我们在一个非常广泛的数据集上评估了所提出算法的准确性,该数据集包括215次试验以及三组不同的受试者在跑步机上行走:健康受试者(n = 39),以三种不同速度行走,以及骨科患者(n = 62)和神经科患者(n = 36),以自选速度行走。结果表明,IMU系统与参考系统之间所有步态参数的相关性都非常强(皮尔逊相关系数在0.83至0.99之间,p < 0.01)。步态阶段持续时间的平均绝对差(MAD)为1.4%,步幅为1.7厘米,步行速度为0.04千米/小时,步频为0.7步/分钟。我们表明,所提出的方法不仅在大范围的步行速度下,而且在骨科和神经科疾病中出现的病理步态中都能达到高精度。与之前所有研究不同的是,我们提出了无需校准的步态阶段和时空参数估计方法,并在大量患有不同疾病的患者中进行了验证。所提出的方法为在日常生活环境中进行普遍的无监督步态评估奠定了基础。