Suppr超能文献

基于传感器的运动分析中的步态序列分割:帕金森病中方法的比较。

Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson's Disease.

机构信息

Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 3, Erlangen 91058, Germany.

Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen 91054, Germany.

出版信息

Sensors (Basel). 2018 Jan 6;18(1):145. doi: 10.3390/s18010145.

Abstract

Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson's disease (PD) is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs) from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical clinical examination by sensor-based movement assessment.

摘要

稳健的步态分割是移动步态分析的基础。已经应用和评估了一系列方法来分割健康和病理步态。然而,在帕金森病(PD)中,步态分割方法的统一评估仍然缺失。在本文中,我们比较了四种流行的步态分割方法,以揭示它们在步态处理中的优势和不足。我们考虑了基于事件的方法中的峰值检测、模板匹配方法中的两种动态时间规整变体以及机器学习方法中的分层隐马尔可夫模型(hHMM)。为了评估这些方法,我们包括了两种广泛用于帕金森步态检查的监督和仪器化步态测试。在第一个实验中,从 10 名 PD 患者的指令直走序列中测量了一系列步伐。在第二个实验中,使用来自另外 34 名 PD 患者的更异构的评估范式,包括直走和转弯步伐以及非步行动作。后一个实验的目的是评估在包括转弯步伐和非步行动作在内的挑战性情况下的方法。结果表明,在第一种情况下,所有方法在 F 分数方面的准确率几乎达到 100%,因此方法之间没有显著差异。因此,我们得出结论,在预定义和同质的步伐序列的情况下,所有方法都可以平等地应用。然而,在第二个实验中,方法之间的差异变得明显,hHMM 获得了 96%的 F 分数,明显优于其他方法。hHMM 还在区分步伐和非步行动作方面表现出很大的潜力,这对于临床步态分析至关重要。我们的结果表明,为了支持和补充基于传感器的运动评估的经典临床检查,必须适当地选择仪器测试程序和所需的步伐分割算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4b8/5796275/a474b719d045/sensors-18-00145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验