Suppr超能文献

在灵长类动物进食过程中,通过视频荧光透视法捕获的舌位置的半自动标记跟踪。

Semiautomatic marker tracking of tongue positions captured by videofluoroscopy during primate feeding.

作者信息

Best Matthew D, Nakamura Yuki, Kijak Nicoletta A, Allen Mitchell J, Lever Teresa E, Hatsopoulos Nicholas G, Ross Callum F, Takahashi Kazutaka

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5347-50. doi: 10.1109/EMBC.2015.7319599.

Abstract

Videofluoroscopy (VF) is one of the most commonly used tools to assess oropharyngeal dysphagia as well as to visualize musculoskeletal structures of humans and animals engaged in various behaviors, including feeding. Despite its importance in clinical and scientific use, processing VF data has historically been extremely tedious because it is performed using manual frame-by-frame methods. With recent technological advances, the frame rate for scientific use has been increasing along with the use of high speed data capture systems. In the current study, we used non-human primates as a model animal to study human feeding behaviors to capture tongue movement based on markers implanted into the tongue. Here, we introduce a semi-automatic marker tracking algorithm that yields high tracking accuracy (> 90%) and dramatic speed improvements (faster than real time labeling). Furthermore, we quantify the sources of tracking errors and the tracking performance as a function of marker speeds. Our results indicate that there is more room for methodological improvements both in detection and prediction of marker positions. Moreover, correspondingly faster frame rates will be required to capture faster kinematic behaviors such as those of mice, which are extensively used to study both control and pathological conditions.

摘要

视频荧光透视检查(VF)是评估口咽吞咽困难以及可视化人类和动物在包括进食在内的各种行为中肌肉骨骼结构的最常用工具之一。尽管它在临床和科学应用中很重要,但处理VF数据在历史上一直极其繁琐,因为它是使用手动逐帧方法进行的。随着最近的技术进步,科学使用的帧率随着高速数据捕获系统的使用而不断提高。在当前的研究中,我们使用非人类灵长类动物作为模型动物来研究人类进食行为,以基于植入舌头的标记物捕获舌头运动。在此,我们介绍一种半自动标记跟踪算法,该算法具有高跟踪精度(>90%)和显著的速度提升(比实时标记更快)。此外,我们量化了跟踪误差的来源以及作为标记速度函数的跟踪性能。我们的结果表明,在标记位置的检测和预测方面,方法改进还有更多空间。此外,相应地将需要更快的帧率来捕获更快的运动行为,例如广泛用于研究控制和病理状况的小鼠的运动行为。

相似文献

1
Semiautomatic marker tracking of tongue positions captured by videofluoroscopy during primate feeding.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5347-50. doi: 10.1109/EMBC.2015.7319599.
2
Fully-automated tongue detection in ultrasound images.
Comput Biol Med. 2019 Aug;111:103335. doi: 10.1016/j.compbiomed.2019.103335. Epub 2019 Jun 27.
3
Development of semi-automatic procedure for detection and tracking of fiducial markers for orofacial kinematics during natural feeding.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:580-583. doi: 10.1109/EMBC.2017.8036891.
4
Cervical vertebrae tracking in video-fluoroscopy using the normalized gradient field.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):524-31. doi: 10.1007/978-3-642-04268-3_65.
5
Computer measurement of oral movement in swallowing.
Dysphagia. 2001 Spring;16(2):97-109. doi: 10.1007/PL00021292.
6
Evidence for an elastic projection mechanism in the chameleon tongue.
Proc Biol Sci. 2004 Apr 7;271(1540):761-70. doi: 10.1098/rspb.2003.2637.
7
Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta.
Dysphagia. 2017 Oct;32(5):663-677. doi: 10.1007/s00455-017-9812-4. Epub 2017 May 20.
10
Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
J Neurosci Methods. 2009 Jun 15;180(2):224-33. doi: 10.1016/j.jneumeth.2009.03.010. Epub 2009 Mar 25.

引用本文的文献

3
Effects of Unilateral Vagotomy on LPS-Induced Aspiration Pneumonia in Mice.
Dysphagia. 2023 Oct;38(5):1353-1362. doi: 10.1007/s00455-023-10564-3. Epub 2023 Feb 14.
4
Development of semi-automatic procedure for detection and tracking of fiducial markers for orofacial kinematics during natural feeding.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:580-583. doi: 10.1109/EMBC.2017.8036891.
5
Animal Models for Dysphagia Studies: What Have We Learnt So Far.
Dysphagia. 2017 Feb;32(1):73-77. doi: 10.1007/s00455-016-9778-7. Epub 2017 Jan 28.

本文引用的文献

1
Videofluoroscopic Validation of a Translational Murine Model of Presbyphagia.
Dysphagia. 2015 Jun;30(3):328-42. doi: 10.1007/s00455-015-9604-7. Epub 2015 Mar 18.
2
Management of Dysphagia in stroke patients.
Gastroenterol Hepatol (N Y). 2011 May;7(5):308-32.
4
Chewing variation in lepidosaurs and primates.
J Exp Biol. 2010 Feb 15;213(4):572-84. doi: 10.1242/jeb.036822.
6
Role of videofluoroscopy in evaluation of neurologic dysphagia.
Acta Otorhinolaryngol Ital. 2007 Dec;27(6):306-16.
7
Swallowing in ALS and motor neuron disorders.
Neurol Clin. 1987 May;5(2):213-29.
8
Fluoroscopy: patient radiation exposure issues.
Radiographics. 2001 Jul-Aug;21(4):1033-45. doi: 10.1148/radiographics.21.4.g01jl271033.
9
Licking behavior in the rat: measurement and situational control of licking frequency.
Neurosci Biobehav Rev. 1998 Oct;22(6):751-60. doi: 10.1016/s0149-7634(98)00003-7.
10
Physiology of swallowing.
Dysphagia. 1989;3(4):171-8. doi: 10.1007/BF02407219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验