Suppr超能文献

基于非侵入式物联网设备的系统生物学中的数据同化和多源决策。

Data assimilation and multisource decision-making in systems biology based on unobtrusive Internet-of-Things devices.

机构信息

Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan.

Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

Biomed Eng Online. 2018 Nov 6;17(Suppl 2):147. doi: 10.1186/s12938-018-0574-5.

Abstract

Biological and medical diagnoses depend on high-quality measurements. A wearable device based on Internet of Things (IoT) must be unobtrusive to the human body to encourage users to accept continuous monitoring. However, unobtrusive IoT devices are usually of low quality and unreliable because of the limitation of technology progress that has slowed down at high peak. Therefore, advanced inference techniques must be developed to address the limitations of IoT devices. This review proposes that IoT technology in biological and medical applications should be based on a new data assimilation process that fuses multiple data scales from several sources to provide diagnoses. Moreover, the required technologies are ready to support the desired disease diagnosis levels, such as hypothesis test, multiple evidence fusion, machine learning, data assimilation, and systems biology. Furthermore, cross-disciplinary integration has emerged with advancements in IoT. For example, the multiscale modeling of systems biology from proteins and cells to organs integrates current developments in biology, medicine, mathematics, engineering, artificial intelligence, and semiconductor technologies. Based on the monitoring objectives of IoT devices, researchers have gradually developed ambulant, wearable, noninvasive, unobtrusive, low-cost, and pervasive monitoring devices with data assimilation methods that can overcome the limitations of devices in terms of quality measurement. In the future, the novel features of data assimilation in systems biology and ubiquitous sensory development can describe patients' physical conditions based on few but long-term measurements.

摘要

生物和医学诊断依赖于高质量的测量。基于物联网 (IoT) 的可穿戴设备必须对人体无干扰,以鼓励用户接受持续监测。然而,由于技术进步的限制,无干扰的 IoT 设备通常质量低且不可靠,因为技术进步已经在高峰时放缓。因此,必须开发先进的推理技术来解决 IoT 设备的限制。这篇综述提出,生物和医学应用中的 IoT 技术应该基于一种新的数据同化过程,该过程融合来自多个来源的多个数据尺度,以提供诊断。此外,所需的技术已经准备好支持所需的疾病诊断水平,如假设检验、多证据融合、机器学习、数据同化和系统生物学。此外,随着物联网的发展,跨学科的融合已经出现。例如,从蛋白质和细胞到器官的系统生物学的多尺度建模,集成了生物学、医学、数学、工程、人工智能和半导体技术的当前发展。基于 IoT 设备的监测目标,研究人员已经逐渐开发出具有数据同化方法的可移动、可穿戴、非侵入性、无干扰、低成本和普及性监测设备,这些设备可以克服设备在质量测量方面的局限性。未来,系统生物学中数据同化的新特点和无处不在的传感器发展可以根据少量但长期的测量来描述患者的身体状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dce/6218968/7b25f37bde88/12938_2018_574_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验